

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 1

Crystal Reports

Advanced Reporting Techniques using Arrays

Overview
This document is intended to assist you to understand, build, and manipulate
Arrays in the Crystal Reports Designer and the Seagate Info Report Designer.

To better understand Arrays you should be familiar with manual running totals,
and variable scopes. There are technical briefs written on both of these topics
and can be downloaded from our website.

For more information on manual running totals search for Scr_running_total.zip
on our support site at http://support.crystaldecisions.com/downloads.

For more information on variable scopes search for Scr_variablescopes.pdf on
our support site at http://support.crystaldecisions.com/docs.

 Contents
INTRODUCTION ..2

Sample Reports needed ... 2
DETAILS ABOUT ARRAYS ...2

Limitations of Array Elements... 2
Assigning values to Arrays .. 3

Declaring Numeric Arrays ...4
Array Specific Functions... 5

Array Specific Functions in Detail ...5
Using Basic Syntax to Create Arrays ...6

Using Arrays ... 6
ARRAYS..7

Using Arrays to eliminate errors... 7
CREATING ARRAYS DYNAMICALLY ...8

Building an Array Dynamically .. 8
Building Multiple Arrays... 10
Passing the Array from Main Report to Subreport 11
Summing the Array.. 11
Sorting the Array manually ... 13
Index Report .. 15

CONTACTING CRYSTAL DECISIONS FOR TECHNICAL SUPPORT17

http://support.crystaldecisions.com/communityCS/TechnicalPapers/scr_running_total.zip.asp
http://support.crystaldecisions.com/downloads
http://support.crystaldecisions.com/communityCS/TechnicalPapers/scr_variablescopes.pdf.asp
http://support.crystaldecisions.com/docs

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 2

cr_arrays.pdf

Introduction
In Crystal Reports (CR), Arrays are ordered lists of values that are all of the
same data type. Data values in Arrays are also known as elements.

To create an Array in CR use the Array function that is available in CR formula
editor. In CR, an Array that contains several elements can be used to manipulate
data to allow for more advanced reporting options.

Sample Reports needed
Before you proceed reading this document, you will need to download the
following sample reports from Crystal Decisions support site at:

http://support.crystaldecisions.com/downloads

The file name to search for is CR_Arrays_Samples.zip.

This Winzip file contains the reports listed in this document. These sample
reports will help you better understand how Arrays work. Most of the sample
code contained in this technical brief is based on these sample reports.

CR_Dynamic_Array_Builder_Crystal_Syntax.rpt Illustrates how to dynamically assign values from a
report to an Array.

CR_Pass_Values_From_Main_Report.rpt Illustrates how to pass an Array created in a
subreport to a main report and display the contents
of that Array in the main report.

CR8_Looping_Through_Multiple_Value_Parameter.rpt Illustrates how to loop through a multiple value
parameter in the record selection formula.

CR_Manual_Running_Array.rpt Illustrates how to use the elements in an Array to
create a ‘Sum’ in a formula

CR_Index_not_store_and_fetch.rpt Illustrates using Arrays to create an Index for a
report.

CR_Multiple_Arrays_Dynamically_Populated.rpt Illustrates how to use build multiple arrays when
the elements exceed 1,000.

Details about Arrays
This section will describe the elements of Arrays, assigning values to Arrays,
and using Arrays.

Limitations of Array Elements
In different versions of CR there are limitations to the amount of elements
allowed in each Array.

• In CR version 6 the limit of elements allowed in the Array are 100
elements.

http://support.crystaldecisions.com/downloads
http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 3

cr_arrays.pdf

• In CR version 7 the limit of elements allowed in the Array are 250
elements.

• In CR version 8 the limit of elements allowed in the Array are 1000
elements.

Assigning values to Arrays
A simple string Array looks like the following:

[“car”, “bus”, “taxi”, “goat”, “boat”]

A simple numeric Array looks like the following:

[1, 2, 3, 4, 5]

In CR versions 6 and 7, you can only declare the Array in a formula and
reference it. You cannot change the elements of an Array as you can in CR
version 8.

For example:

//@MyArray

//assigning values to an Array in Crystal Reports version
//6, and 7

Numbervar Array MyArray := [1, 2, 3, 4, 5];

0

Create a new formula similar to the following to reference values of an Array:

//@ReferenceArray

//referencing the values of elements in the

//variable MyArray

whileprintingrecords;

Numbervar Array MyArray;

If {database.field} = condition1

Then MyArray [2]

Else MyArray [4]

This formula will only return values that meet the condition. For example, if the
database field meets condition1 then the second element of the Array will
display. Otherwise, the fourth element will display.

CR version 8 gives you the ability to assign values to an Array.

To assign values to elements in the Array, create a formula similar to the
following:

//@ChangeArray

//changing the values of elements in the variable MyArray

whileprintingrecords;

Numbervar Array MyArray;

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 4

cr_arrays.pdf

If {database.field} = condition1

Then MyArray [2] := 50

Else MyArray [4] := 83

This formula replaces elements in the Array based on the condition. Such as, if
the database field equals the condition then the second element in the Array will
change the value to 50. Otherwise, the fourth element will change to the value
of 83.

Declaring Numeric Arrays
To declare a numeric Array in CR, create a formula similar to the following:

//@myArray

//declaring an Array with five elements

Numbervar Array MyArray := [1, 2, 3, 4, 5];

To assign a new value to one particular element of the Array in CR version 8,
create a formula similar to the following:

//@myArray

//Assigning values to one element

Numbervar Array MyArray := [1, 2, 3, 4, 5];

MyArray [3] := 25

The element 3 was reassigned with the value 25.

Only elements that exist in the declared Array may be reassigned.

For example, you attempt to assign a sixth element value in an Array that only
has five elements declared will result in error.

For example:

//@myArray

//Assigning a value to one element not declared

//in the Array

Numbervar Array MyArray := [1, 2, 3, 4, 5];

MyArray [6] := 25

You have not declared the Array to have 6 elements therefore you cannot assign
it a value.

NOTE To increase the number of elements within an Array, you can use either the Redim or
Redim Preserve functions. These functions are available in the Crystal Reports formula
editor using either Crystal Syntax or Basic Syntax.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 5

cr_arrays.pdf

Array Specific Functions
In CR version 8, you can increase the number of elements in an array after the
array has been created and populated with data. You can choose to preserve or
not to preserve the data that was previously assigned to positions within the
array. Depending on what you want to do will determine the actual function to
use. Also, there is a function that counts the total number of elements existing
within the Array.

These functions are:

• Redim x[n]

• Redim Preserve x[n]

• Ubound [x]

Array Specific Functions in Detail
Redim x[n]

Using this function will re-dimension the array x to size n, where x is an array
and n is a positive whole number specifying the new size of n.

For example:

//@AddElements

//creates additional elements in array without preserving

//previous values held

StringVar array x := ["a", "bb", "ccc"];

Redim x [4];

//now x = ["", "", "", ""]

The Array will now contain four elements, all of which are blank strings. The
previous string values held within the original positions have all been reassigned
the value of a blank string. This will not preserve the data that was previously
assigned a position within the array.

Redim Preserve x[n]

Using this function will re-dimension the array x to size n, while preserving the
initial values in x. The array is x and n is a positive whole number specifying the
new size of n.

Example Formula:
//@AddElements

//creates additional elements in array while preserving

//previous values held

StringVar array x := ["a", "bb", "ccc"];

Redim Preserve x [4];

//now x = ["a", "bb", "ccc", ""]

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 6

cr_arrays.pdf

The Array will now contain four elements. All elements previously populated
maintained their original values while the new element has been assigned the
default value for the Array’s data type. This will preserve the data that was
previously assigned a position within the array.

Ubound(x)

This function returns a number containing the largest available subscript for the
given array.

For example:

//CountElements

NumberVar Array x;

Redim x[10];

UBound(x)

//Returns 10

This function is commonly used to obtain the size of an array before using a
looping control mechanism to systematically manipulate elements of the array.

Using Basic Syntax to Create Arrays
When variables are declared using Basic Syntax, the structure of declaration and
value assignment is slightly different than from using Crystal Syntax.

For Example:

//BasicSyntaxArray

//Formula assigns an additional position to the array while

//maintaining previous values stored in other positions

dim myarray(1) as number

counter = counter + 1

myarray = array(counter)

Redim preserve myarray(counter)

myarray(counter) = {Customer.Customer ID}

//Adds a value to the new position and displays it

formula = myarray(counter)

Using Arrays
In CR you are limited to using one value per variable declared. You are able to
store up to 1000 separate values into a single Array. This allows you to pass
many values at one time to a subreport. By passing values to a subreport, you
can dynamically manipulate the values assigned to variables. In addition, this
allows you to sum the elements in an Array within the subreport, after the array
has been systematically manipulated.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 7

cr_arrays.pdf

Arrays
The section goes through each sample report in detail. The sample reports
provided describe possible uses for Arrays. In this section, you will find details
on how to:

• create an Array that loops through a multiple value parameter in the record
selection formula.

• dynamically assign values from a report to an Array.

• pass an Array created in a subreport to a main report and display the
contents of that Array in the main report.

• use the elements in an Array to create a ‘sum’ in a formula.

• use Arrays to create an index for a report.

• use Arrays to create a ‘Top N’ report that can be sorted by a field other than
the one for ‘Top N’.

• use Arrays to suppress blank subreports without generating any white space.

Using Arrays to eliminate errors
A multiple value parameter is stored as an Array. You have created a parameter
that allows you to enter multiple discrete strings. If you enter spaces in the
parameter unintentionally and then search for those values stored in the
database, a complete record set will not bet returned. This is because the values
stored in the database do not have spaces, and do not match your parameter
entry.

Viewing your record selection, the formula generated is as follows:

{MyDatabase.Myfield} IN {?Parameter}

This formula is not allowing for spaces in the parameter name. Therefore, the
report skips records in the database without spaces.

To return the complete record set, including the parameter entry containing a
zero, you can modify the record selection formula to read similar to the
following:

numbervar counter;

numbervar positionCount:=count({?test});

stringvar Array NewArray;

while positionCount >= counter do

(

counter:=counter + 1;

redim preserve NewArray[counter];

NewArray [counter] := trim({?test}[counter])

);

{Customer.Customer Name} in NewArray

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 8

cr_arrays.pdf

Note The code provided in this example is commented thoroughly in the sample report called
CR8_Looping_Through_Multiple_Value_Parameter.rpt contained in the Winzip file,
CR_Arrays_Samples.zip.

The purpose of this formula is to:

• Create a counter

• Create an endpoint for the loop

• Create a storage Array

The formula counts how many items have been entered into the multiple-value
parameter. Then it loops through all of the selections entered in the parameter,
trims each one, and assigns the trimmed entry to an element in the new Array.
Now, the record selection is based on the contents of the New Array.

Note If your database is large, and you create a record selection similar to this example, CR
will be forced to bring back all of the records from the database and filter them on the
client side. This can significantly impact the performance of your report.

Creating Arrays Dynamically
In order for you to successfully workaround building Arrays in CR you must be
familiar with building Arrays dynamically. In other words, by dynamically
building an Array you can change the value of elements contained in the Array
to reflect the actual values contained in your database.

In order to dynamically create an Array, it is recommended that you are familiar
with manual running totals; shared variables; control structures such as CASE
statements, IF THEN ELSE statements, looping, etc.

Building an Array Dynamically
The following example formula verifies if a value of a database field is
contained in the array. If the value is not contained in the array, the formula
performs the following actions:

• The counter increments

• The size of the array increments

• The value of the database field is added to the array

Example Formula:

//@DynamicArrayBuilder

whileprintingrecords;

numbervar array MyArray;

numbervar Counter;

//The line below ensures that only new values are added to
//the array.

if not({MyDatabase.ValueForArray} in MyArray) then

http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 9

cr_arrays.pdf

//The line below is activated if the field value in not
//already contained in the array. The counter increments
//by one.

(Counter := Counter + 1;

//The line below ensures that the size of the array does
//not exceed 1000 values. An array can contain a maximum
//of 1000 values.

if Counter <= 1000

//Redim Preserve is function that changes the size of the
//array according to the new value of Counter. Also, the
//existing values in the array are not removed or changed.
//The array now has space for a new value.

then (Redim Preserve MyArray[Counter];

//The new value is added to the newly created space in the
//array.

MyArray[Counter] := {MyDatabase.ValueForArray}));

Figure 1 - Only new values are added to the array. The number of values in the
array is increased and the counter is incremented by one. The
formula displays the new array values.

Note The code provided in this example is commented thoroughly in the sample report called
CR_Dynamic_Array_Builder_Crystal_Syntax.rpt contained in the Winzip file,
CR_Arrays_Samples.zip.

http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 10

cr_arrays.pdf

Building Multiple Arrays
The following formula example illustrates how to build multiple arrays when the
size of the array exceeds 1,000 elements and verifies if a value of a database
field is contained in the any of the arrays. The formula performs the following
actions:

• Dynamically resizes and populates the arrays

• Adds only new elements to the arrays

• Increments the size of the arrays

• Adds values to the next array if the current array reaches 1,000 elements

• Resets the arrays on the Group Footer level

Example Formula:
//@Array Generation, Crystal Syntax

whileprintingrecords;

//In this example, up to 3 arrays are populated
//dynamically. If groups have more than 3000 unique
//records, more arrays can be added.

numbervar array idarrayCS;

numbervar array idarrayCSII;

numbervar array idarrayCSIII;

//rt1CS is a counter that will be used to assign the
//element number (array position) of a value in an array.

numbervar rtICS;

//The code below resets the array on the group level.
//Arrays are reset to have 1 element which equals 0...an
//array must have at least one element and this is why the
//array's size is set to 1 element.

if onfirstrecord or {Customer.Country} <>
previous({Customer.Country}) then

(redim idarrayCS[1];

redim idarrayCSII[1];

redim idarrayCSIII[1];

rtICS := 0);

//The code below verifies to see if the Order ID field is
//in any of the above-declared arrays. If it is, it is not
//added again and rt1 is not incremented.

if not({Orders.Order ID} in idarrayCS or {Orders.Order ID}
in idarrayCSII or {Orders.Order ID} in idarrayCSIII) then

(

rtICS := rtICS + 1;

//Redim means that the size of the array (the number of
//elements) is changed to the value at the right.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 11

cr_arrays.pdf

//Preserve means that all elements in the array that are
//redimmed remain in the array.

if rtICS <= 1000 then (Redim Preserve idarrayCS[rtICS];
idarrayCS[rtICS] := {Orders.Order ID});

if rtICS in 1001 to 2000 then (Redim Preserve
idarrayCSII[rtICS-1000]; idarrayCSII[rtICS-1000] :=
{Orders.Order ID});

if rtICS in 2001 to 3000 then (Redim Preserve
idarrayCSIII[rtICS-2000];idarrayCSIII[rtICS-2000] :=
{Orders.Order ID});

);

if rtICS <= 1000 then idarrayCS[rtICS]

else if rtICS in 1001 to 2000 then idarrayCSII[rtICS-1000]

else if rtICS in 2001 to 3000 then idarrayCSIII[rtICS-2000]

Note The code provided for this example is commented thoroughly in the sample report called
CR_Multiple_Arrays_Dynamically_Populated.rpt contained in the Winzip file,
CR_Arrays_Samples.zip. To view the code of the above formula in Crystal syntax or in
Basic syntax, edit the applicable @Array Generation formula. Also, there is a manual
running total formula, @Manual RT, in the Details section that indicates how many
elements per group are added to all of the arrays.

Passing the Array from Main Report to
Subreport
Many of the workarounds involve building Arrays in a subreport and calling
them from the main report.

It is possible to share an Array just like you can share a variable. The following
syntax enables you to share the Array:

//sharing the Array

Shared StringVar Array MyArray := [“Todd”, “Jason”, “Dirk”,
“Jamie”, “Aron”];

Note The code provided in this example is commented thoroughly in the sample report called
CR_Pass_Values_From_Main_Report.rpt contained in the Winzip file,
CR_Arrays_Samples.zip.

Summing the Array
You can sum the elements of an Array without using a looping formula.

If you have a numeric Array with 10 elements and want to find out the sum of
the first five elements, create a formula similar to the following:

//@SumFirstFiveElements

//summarizes the first five positions in the Array

Whileprintingrecords;

numbervar Array MyArray;

sum (MyArray[1 to 5])

http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp
http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 12

cr_arrays.pdf

For example, you want to see the total Sums of Last Year’s Sales for various
companies. You want to know how the top third, middle third, and bottom third
performed last year. You have already dynamically built an Array and named it
MyArray.

The following code allows you to view the top, middle, and bottom third of the
Sum of Last Year’s Sales for various companies:

{@FirstThirdTotal}

whileprintingrecords;

numbervar Array MyArray;

numbervar counter;

numbervar thirds;

thirds:=truncate((counter / 3), 0);

sum (MyArray[1 to thirds])

{@SecondThirdTotal}

whileprintingrecords;

numbervar Array MyArray;

numbervar counter;

numbervar thirds;

thirds:=truncate((counter / 3), 0);

sum (MyArray[(thirds + 1) to (thirds * 2)])

{@LastThirdTotal}

whileprintingrecords;

numbervar Array MyArray;

numbervar counter;

numbervar thirds;

thirds:=truncate((counter / 3), 0);

sum (MyArray[(thirds * 2 + 1) to counter])

Note The code provided in this example is commented thoroughly in the sample report called
CR_Manual_Running_Array.rpt contained in the Winzip file, CR_Arrays_Samples.zip.

http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 13

cr_arrays.pdf

Sorting the Array manually
If you want to sort the elements of an Array manually, then you would need to
create a custom looping formula. To sort the elements of an Array within CR,
you must use a double For Loop. Create a formula similar to the following:

Note CR has a limit of 30,000 loop evaluations per formula. Only Arrays that have a maximum
of 150 elements should be sorted using this method.

To sort the elements of a numeric Array, create a formula similar to the
following and call it @Sort_Array:

1. Create a formula similar to the following:
// This formula tests to see if the element of the Array

//is greater than the next element.

//If the current element is greater than the next element,

//their positions are switched using another variable

//to temporarily store the value.

WhilePrintingRecords;

NumberVar Array Array_Name;

NumberVar counter1;

Numbervar counter2;

Numbervar temp;

Numbervar Array_Size := count(Array_Name);

for counter1 := Array_Size to 1 step -1 do

(

for counter2 := 1 to counter1 - 1 do

(

if Array_Name[counter2] >

Array_Name[counter2 + 1] then

(

temp := Array_Name[counter2];

Array_Name[counter2] :=

Array_Name[counter2 + 1];

Array_Name[counter2 + 1] := temp;

)

);

);

2. Replace the Array_Name variable with the variable name of your Array.

3. Insert the formula into a section in your report. Ensure that you insert the
formula in the section after the section that is used to populate your Array.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 14

cr_arrays.pdf

The same logic can be used to sort the elements of a string Array:

1. Create a new formula called @Sort_Array.

2. Cut and paste the following formula into the formula editor:
// This formula tests to see if the element of the Array

//is greater than the next element.

//If the current element is greater than the next element,

//their positions are switched using another variable

//to temporarily store the value.

WhilePrintingRecords;

Stringvar Array Array_Name;

NumberVar counter1;

Numbervar counter2;

Stringvar temp;

Numbervar Array_Size := count(Array_Name);

for counter1 := Array_Size to 1 step -1 do

(

for counter2 := 1 to counter1 - 1 do

(

if Strcmp(Array_Name[counter2],

Array_Name[counter2 + 1]) > 0 then

(

temp := Array_Name[counter2];

Array_Name[counter2] :=

Array_Name[counter2 + 1];

Array_Name[counter2 + 1] := temp;

)

);

);

3. Replace the Array_Name variable with the variable name of your Array.

4. Insert the formula into a section in your report. Ensure that you insert the
formula in the section after the section, which is used to populate your
Array.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 15

cr_arrays.pdf

Index Report
You can build an Index in CR using an Array. CR does not have any internal
capabilities to create Indexes.

Figure 2 – The Index being built using an Array

To create an index using an Array, complete the following steps:

1. Dynamically create two Arrays at the Group Header level. One of the
Arrays must contain the Group Name the other Array must contain the Page
Number that corresponds with the Group.

2. Preview the report. You will see the two Arrays with all of the values
necessary to build the Index. You will also see the counter that will tell you
how many elements are contained in the Array.

3. Insert a subreport in the main Report Footer.

4. Share the Arrays and the counter to extract the fields from the two Arrays.

Figure 3 – Table of Contents subreport

The subreport needs a database field placed in the Details section. There must
be enough details in our subreport to accommodate the number of elements in
the Array.

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 16

cr_arrays.pdf

For example:

Use the CustomerName field and place in the Details section because it
produces enough details lines to support the number of elements in the Array.

From the subreport, complete the following steps to display the elements of the
Array:

1. 1. Create a manual running total for the subreport and call it @subcounter.
This counter will be used to display each element from the Array in turn.

2. Create two formulas. The first formula will display the Group Name and
the second formula will display the Page Number.

//@displayGroupName

//This will display the Group Name

whileprintingrecords;

numbervar subcounter;

shared stringvar Array GroupNameArray;

GroupNameArray[subcounter]

{@displayPageNumber}

//This will display the Page Number

whileprintingrecords;

numbervar subcounter;

shared numbervar Array PageNumberArray;

PageNumberArray[subcounter]

At each detail line, the two formulas will display the element that is located at
the position indicated by subcounter. The subcounter is incremented at each
line. This allows the two formulas to display the elements at the position of the
subcounter.

The Customer Name field that is driving the details section has more records
then there are Array elements. The Index contains unnecessary information. In
order to eliminate the extra information, and only have as many details lines
display that are necessary for the two Arrays, you must suppress and
conditionally suppress sections.

1. From ‘Format’, select ‘Section’.

2. Suppress all of the sections except the Report Header and the Details
section.

At the Details section, create a conditional suppression formula similar to the
following to eliminate unnecessary details lines:

//to eliminate unnecessary details lines

Whileprintingrecords;

Shared numbervar counter;

Numbervar subcounter;

If subcounter > counter then true

Crystal Reports Advanced reporting techniques using arrays

7/23/2002 10:45 AM Copyright 2001 Crystal Decisions, Inc. All Rights Reserved. Page 17

cr_arrays.pdf

This ensures that CR will generate as many details lines as there are elements in
the Array because the Array is by definition as long as Counter.

3. Suppress the Customer Name field so you only see the Index.

 Figure 4 – An Index created using an Array

Note The code provided in this example is commented thoroughly in the sample report called
CR_Index_not_store_and_fetch.rpt contained in the Winzip file, CR_Arrays_Samples.zip.

Contacting Crystal Decisions for Technical Support
We recommend that you refer to the product documentation and that you visit
our Technical Support web site for more resources.

Self-serve Support:
http://support.crystaldecisions.com/

Email Support:
http://support.crystaldecisions.com/support/answers.asp

Telephone Support:
http://www.crystaldecisions.com/contact/support.asp

http://support.crystaldecisions.com/communityCS/FilesAndUpdates/cr_arrays_samples.zip.asp
http://support.crystaldecisions.com/
http://support.crystaldecisions.com/support/answers.asp
http://www.crystaldecisions.com/contact/support.asp

	Overview
	Contents
	Introduction
	Sample Reports needed

	Details about Arrays
	Limitations of Array Elements
	Assigning values to Arrays
	Declaring Numeric Arrays

	Array Specific Functions
	Array Specific Functions in Detail
	Using Basic Syntax to Create Arrays

	Using Arrays

	Arrays
	Using Arrays to eliminate errors

	Creating Arrays Dynamically
	Building an Array Dynamically
	Building Multiple Arrays
	Passing the Array from Main Report to Subreport
	Summing the Array
	Sorting the Array manually
	Index Report

	Contacting Crystal Decisions for Technical Support

