
B035-2526-108K
DOCS.TERADATA.COM

ODBC Driver for Teradata®

User Guide

Release 16.20

October 2018

Copyright and Trademarks
Copyright © 2017 - 2018 by Teradata. All Rights Reserved.

All copyrights and trademarks used in Teradata documentation are the property of their respective owners. For more
information, see Trademark Information.

Product Safety
Safety type Description

NOTICE
Indicates a situation which, if not avoided, could result in damage to property, such
as to equipment or data, but not related to personal injury.

CAUTION
Indicates a hazardous situation which, if not avoided, could result in minor or
moderate personal injury.

WARNING
Indicates a hazardous situation which, if not avoided, could result in death or serious
personal injury.

Warranty Disclaimer
Except as may be provided in a separate written agreement with Teradata or required by applicable law, the information
available from the Teradata Documentation website or contained in Teradata information products is provided on an "as-
is" basis, without warranty of any kind, either express or implied, including the implied warranties of merchantability, fitness
for a particular purpose, or noninfringement.

The information available from the Teradata Documentation website or contained in Teradata information products may
contain references or cross-references to features, functions, products, or services that are not announced or available
in your country. Such references do not imply that Teradata Corporation intends to announce such features, functions,
products, or services in your country. Please consult your local Teradata Corporation representative for those features,
functions, products, or services available in your country.

The information available from the Teradata Documentation website or contained in Teradata information products may
be changed or updated by Teradata at any time without notice. Teradata may also make changes in the products or
services described in this information at any time without notice.

Feedback
To maintain the quality of our products and services, e-mail your comments on the accuracy, clarity, organization, and
value of this document to: teradata-books@lists.teradata.com

Any comments or materials (collectively referred to as "Feedback") sent to Teradata Corporation will be deemed
nonconfidential. Without any payment or other obligation of any kind and without any restriction of any kind, Teradata
and its affiliates are hereby free to (1) reproduce, distribute, provide access to, publish, transmit, publicly display, publicly
perform, and create derivative works of, the Feedback, (2) use any ideas, concepts, know-how, and techniques contained
in such Feedback for any purpose whatsoever, including developing, manufacturing, and marketing products and services
incorporating the Feedback, and (3) authorize others to do any or all of the above.

https://docs.teradata.com/access/sources/dita/map?dita:mapPath=wbc1537988759565.ditamap
mailto:teradata-books@lists.teradata.com

Chapter 1: Overview . 6
Introduction . 6
Prerequisites . 6
Supported Releases . 6
Key Changes in Product Behavior . 7
New Driver Manager Support on Unix . 9
Determining the Installed Versions of ODBC Driver for Teradata . 10
Certification and Release Information . 11
UNIX and Linux Information . 11
Apple OS X Information . 14

Chapter 2: Configuration for UNIX/Linux Systems . 17
Overview . 17
ODBC Directories . 17
Coexistence of Different Version Drivers on the Same Machine . 18
Verifying the TCP/IP Connection . 18
Configuring a UNIX System . 19
iODBC and unixODBC Driver Manager Installation . 20
iODBC and unixODBC Driver Manager Connection Testing . 21

Chapter 3: Configuration for Windows . 23
Overview . 23
Windows ODBC Driver Directories . 23
Configuring a Data Source . 23
Reconfiguring a Data Source . 42
Resolving a Data Source Name . 43
Session Character Sets and Translation DLLs . 44
Working with DSNs . 44

Chapter 4: Configuration for Apple OS X . 48
Overview . 48
ODBC Driver Is Universal Binary . 48
ODBC Driver Directories . 48
ODBC Driver Manager . 49
odbc.ini File . 49
Configuring a DSN Using ODBC Administrator Tool . 49
Teradata ODBC Driver Options . 55
Teradata ODBC Driver Advanced Options . 60
Configuring a DSN Manually in odbc.ini . 66

Contents

ODBC Driver for Teradata® User Guide, Release 16.20 3

Verifying Connection to the Teradata Database . 66

Chapter 5: Configuration of odbc.ini in UNIX/Linux and Apple OS X . 67
ODBC.INI Structure . 67
ODBC Administration . 72
Setting ODBCINI . 73
Teradata DSN Options . 74
DSN Tracing Attributes . 87

Chapter 6: ODBC Application Development . 90
Overview . 90
Software Development Kits . 90
UNIX OS Compilation Options . 91
Apple OS Compilation Options . 92
ODBC Conformance . 92
ODBC SQL Grammar . 112
ANSI SQL 1992 Syntax . 116
ODBC Connection Functions and Dialog . 120
ODBC Pattern Escape Character . 137
Large Objects . 137
User-Defined Functions . 150
User-Defined Types and User-Defined Methods . 152
Parameter Arrays . 174
New Parser . 179
Large Decimal and BIGINT Support . 179
64-bit Support . 179
Extended Object Names (EON) . 180

Chapter 7: Network Security . 181
Overview . 181
Password Encryption . 181
Single Sign-On (Windows and Apple OS X) . 182
Data Encryption . 184
Extensible Authentication, Authorization, and Encryption . 185
Authentication Mechanisms . 187
Enhancing Security . 192
Constraints . 192
Teradata Wallet . 193

Chapter 8: ODBC Driver for Teradata Application Development . 195
Overview . 195
Teradata Extensions to the ODBC Standard . 196
Stored Procedures . 205
Auto-Generated Key Retrieval . 210
SQL Descriptor Fields . 211

Contents

ODBC Driver for Teradata® User Guide, Release 16.20 4

International Character Set Support . 213
Atomic UPSERT . 228
ANSI Date and Time Restrictions . 229
Period Data Types . 232
Geospatial Types . 239
Number Data Types . 240
Array Data Types . 241
XML Data Type . 242
JSON Integration . 244
DATASET Data Type . 246
SET TRANSFORM GROUP FOR TYPE Statement . 247
NoPI Tables . 248
Trusted Sessions . 248
Restrictions . 249
ANSI Migration Issues . 250
Configuration Characteristics . 251
SQL Considerations . 251
DSN Settings for Third-Party Applications . 252

Appendix A: odbc.ini File Examples . 257

Appendix B: odbcinst.ini File Examples . 260

Appendix C: ODBC Options Examples . 262

Appendix D: Deprecated SQL Transformations . 264

Appendix E: ODBC Sample Program Usage Information . 268

Appendix F: MultiVersion Support . 271

Appendix G: New Teradata ODBC Driver Compatibility Reference . 282

Appendix H: Security Considerations . 309

Appendix I: Additional Information . 310

Contents

ODBC Driver for Teradata® User Guide, Release 16.20 5

Introduction
This user guide contains information for the Windows, UNIX/Linux, and Apple OS X versions
of ODBC Driver for Teradata. Unless a paragraph or section is specifically marked as
Windows only, UNIX system only, or Apple OS X only, information pertains to the drivers for
all supported operating systems.

ODBC standards have been developed through the efforts of an industry consortium called
the SQL-Access Group (SAG), which consists of vendors that include Teradata, Hewlett-
Packard®, Ingres, Oracle®, Informix, Sybase®, Microsoft®, and Novell®. The standards
established by SAG define common database access mechanisms to simplify the exchange
of data between client and server.

ODBC drivers connect applications with databases. This book describes how ODBC Driver
for Teradata interfaces with Teradata Database. ODBC Driver for Teradata conforms to
standard ODBC 3.8 Core-Level specifications.

Prerequisites
The following prerequisite knowledge is required for this product:

• Windows, UNIX, or Apple OS X concepts and commands

• ANSI Structured Query Language (SQL)

• ODBC and Teradata SQL

• ODBC Programmer’s Reference

Supported Releases
This book supports the following releases:

• Teradata Database 16.20

• Teradata Tools and Utilities 16.20

• ODBC Driver for Teradata 16.20

Overview

1

ODBC Driver for Teradata® User Guide, Release 16.20 6

https://docs.microsoft.com/en-us/sql/odbc/reference/odbc-programmer-s-reference

Note:

Please note the following as you use this manual:

• The term "old" is used to refer to Teradata ODBC Driver, version 16.10 or earlier. For
example, "old Teradata ODBC driver".

• The term "new" is used to refer to Teradata ODBC Driver, version 16.20 or newer.
For example, "new driver".

Note:

See Determining the Installed Versions of ODBC Driver for Teradata to verify the ODBC
Driver for Teradata version number.

Supported operating systems, supported Teradata Database versions, and product version
numbers for all Teradata Tools and Utilities are available (at http://www.info.teradata.com)
in a single spreadsheet titled Teradata Tools and Utilities Supported Platforms and Product
Versions (B035-3119).

Key Changes in Product Behavior
The 16.20 version of Teradata ODBC Driver has a new code base, and many of the features
found in previous versions have been completely redesigned. The new driver does not include
all of the deprecated features found in previous versions of the Teradata ODBC Driver, and
these features have been removed. For more information about the new driver and how its
functionality compares to the previous versions of the Teradata ODBC Driver, see
Deprecated Features for New Teradata ODBC Driver.

This version of ODBC Driver for Teradata includes the following characteristics:

• Deprecated features from the Teradata ODBC Driver are no longer functional and are
not supported in the new driver. There are no workarounds for these procedures, as they
are obsolete. For a complete list of obsoleted features which do not work in the new
driver, see Deprecated Features for New Teradata ODBC Driver.

• Starting with version 15.10.01.x, the Side-by-Side feature requires unique driver names
for DSN-less connecting Applications in order to reference the different versions of
drivers that may be installed. For more information, see MultiVersion Support.

• ODBC install is self-contained and the installation of other Teradata Tools and Utilities
products such as Teradata ICU, Call-Level Interface (CLI), and TeraGSS is not required.

• Installing the ODBC Driver no longer automatically migrates DSNs.

DSNs belonging to the older versions of the driver will not be converted to the newly
installed version of the ODBC Driver. See Driver Migration below for more information.

• Supports the use of unixODBC and iODBC driver managers. This is in addition to existing
support of Progress DataDirect Driver Manager.

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 7

http://www.info.teradata.com

• Teradata ODBC Driver strictly adheres to ODBC specifications. Non-compliant ODBC
functions found in old versions of TD ODBC driver are not supported by the new driver.

• As an important example of adherence to the ODBC specification, you must close the
cursor before executing another query or else a cursor error is returned. Previously, you
were able to bypass closing the cursor but this is not the correct behavior. This and other
differences can be found in New Teradata ODBC Driver Compatibility Reference.

• Teradata ODBC driver conforms to standard ODBC 3.8 core level specifications.

Differences in Driver Implementation

There are differences between the old Teradata ODBC Driver (16.10 and older) and the new
driver's SLOB implementation. The new driver includes the following changes for SLOB
implementation:

• Caches, or attempts to cache, up to 2GB of all SLOBs in a row.

• Three configuration parameters:

◦ 1-Enable SLOB Random Access

◦ 2-Max size of one SLOB

◦ 3-Max size of all SLOBs in a row

For more information, and a detailed list of features in the new driver, refer to New Teradata
ODBC Features.

Driver Migration

If you are migrating to the new driver from an old Teradata ODBC Driver (16.10 or older),
update the Driver key to point to the newly installed driver.

Note:

If a user installs the same version of new and old drivers, the current ODBC Driver
installation overwrites existing DSNs. Before a new ODBC Driver installation, make
backup copies of DSNs first and then proceed with the installation. Once installation is
complete, copy back the old DSNs.

On Windows, if the desired driver is Teradata ODBC DSN:

1. Change the key value under HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBC.INI
\ODBC Data Sources from Teradata to Teradata ODBC Driver 16.xx as shown in the figures
below.

From

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 8

To:

2. Also change the key HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBC.INI\Teradata
ODBC DSN\Driver from C:\Program Files (x86)\Teradata\Client\15.10\bin\tdata32.dll
to Teradata ODBC Driver 16.xx as shown in the figures below.

From:

To:

The DSN now points to the new driver.

New Driver Manager Support on Unix
The new Teradata ODBC Driver, starting with version 16.20, supports the industry standard
iODBC Driver Manager and unixODBC Driver Manager on Unix platforms, in addition to the
DataDirect Driver Manager.

Be aware that different driver managers may have different behaviors within the standards
of ODBC. With the new Teradata ODBC Driver, this same driver can be used with any of the
driver managers mentioned above. Applications and libraries no longer need to be rebuilt for
specific Driver Managers, as the new driver now works with more driver managers. Some of
the benefits of these driver managers are listed below.

Many applications are written to be used with common driver managers such as iODBC and
unixODBC.

Performance gains in reopening connections using the Driver Managers’ connection pooling
is available through iODBC and unixODBC. See the respective driver manager
documentation for more information.

Note:

Be aware there are security risks with using connection pooling. For more information,
see Connection Pooling (Windows and Apple OS X).

Also, both of these driver managers are open source and freely available, making them very
popular. You can take advantage of these driver managers, which means it will be easier to
connect to Teradata through languages like Perl, Python, PHP, R and so on.

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 9

Tools built to connect these languages to an ODBC driver were typically designed with the
unixODBC Driver Manager or iODBC Driver Manager in mind. With the new Teradata ODBC
driver, these no longer need to be rebuilt purposely for the DataDirect Driver Manager in order
to access the Teradata database.

If you need more information about connecting with Perl, Python, and other supported
languages, visit the Teradata Community at . Use keywords like ODBC PERL or ODBC
Python to search on how to use Perl or Python through the new Teradata ODBC driver.

For installation and use of iODBC and unixODBC driver managers, see Configuration for
UNIX/Linux Systems.

Determining the Installed Versions of ODBC Driver for
Teradata

Windows
To determine the currently installed versions of ODBC Driver for Teradata on Windows, open
32-bit ODBC Administrator or 64-bit ODBC Administrator. Select the Drivers tab and find
the entries for Teradata Database ODBC Driver. The driver versions will be displayed.

Linux/UNIX and Apple OS X Systems
To determine the currently installed version(s) of ODBC Driver for Teradata on a Linux, UNIX
or Apple OS X system, use a command from the following table.

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 10

http://community.teradata.com

Operating System Command

Oracle Solaris pkginfo -l | grep tdodbc

IBM® AIX lslpp -R ALL -Lc | grep tdodbc

Red Hat Linux rpm -qa | grep tdodbc

SUSE Linux rpm -qa | grep tdodbc

Apple OS X TTU ListProducts application located in Applications > Teradata
Client 16.20 > ListProducts

Ubuntu dpkg -l "tdodbc*" | grep ^ii

Certification and Release Information
To view the releases supported by this document, see Supported Releases.

The new driver will replace the old Teradata ODBC driver as part of the TTU suite and ODBC
mini-suite.

UNIX and Linux Information
This section includes directory, variable, library, and migration features specific to UNIX and
Linux operating systems.

Teradata Tools and Utilities Directory Layout
The Teradata Tools and Utilities release directory is the combination of the user specified
base directory, the Teradata Tools and Utilities fixed directory and the Teradata Tools and
Utilities release directory. The installation package allows the user to select a starting
location where a Teradata Tools and Utilities release will be installed. The default location
is /opt. The tdodbc installation package includes both the 32-bit and 64-bit ODBC Driver.

For information about installing operating system-specific utilities, see the documentation
listed in Related Documentation.

Changes to Runtime Environment Variable Settings
TTU products no longer depend on environment variables. For IBM AIX, only one version can
be active, either 32-bit or 64-bit. A script is available to change 64-bit to 32-bit, and vice
versa: setusrliblinks.sh. The script is installed in <prefix>/teradata/client/16.20/

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 11

odbc_32. To use the 32-bit ODBC driver, use setusrliblinks.sh. The 64-bit driver is
enabled by default on a 64-bit system.

32-bit use script setusrliblinks.sh. at <prefix>/teradata/client/16.20/
odbc_32.

32-bit, 64-bit .env files at <prefix>/teradata/client/16.20/odbc_32 or <prefix>/
teradata/client/16.20/odbc_64.

64-bit Ubuntu at: /usr/lib32 and /usr/lib (64-bit system libraries).

System Library and Driver Directories
This section provides information about system libraries and drivers.

Operating System 32-bit 64-bit

Linux /usr/lib /usr/lib64

IBM AIX /usr/lib /usr/lib

Oracle Solaris on SPARC systems /usr/lib /usr/lib/sparcv9

Oracle Solaris on AMD Opteron
systems

/usr/lib /usr/lib/amd64

Ubuntu /usr/lib32 /usr/lib (64-bit system libraries)

ODBC Driver Library
This section provides information about library references in operating system directories.
This is accomplished using symbolic links to the actual library.

tdodbc (product)

• libodbc.so (or .a on AIX)

• libodbcinst.so

• libivicu27.so (32-bit)

• libddicu27.so (64-bit)

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 12

Simbaodbc (product)

• tdataodbc_sb32.so (32-bit)

• tdataodbc_sb64.so (64-bit)

ODBC Integrated Directories
ODBC contains release-independent directories which are denoted by ODBC_32 and
ODBC_64.

Their sub-directories are symbolic links to the respective 32-bit and 64-bit Teradata Tools
and Utilities release directories installed during the installation of the current ODBC.

ODBC_32 and ODBC_64 contain their respective odbc.ini and odbcinst.ini files which are
free of any use of a Teradata Tools and Utilities release path. It is required that these
templates be used when setting up the odbc.ini with the desired DSN settings. Otherwise,
the user will be continuously updating the .ini files when different Teradata Tools and
Utilities releases are installed. In particular, the path values in the odbc.ini template for
InstallDir and Driver must be the ones defined in the template; they cannot be modified.

Whenever a new Teradata Tools and Utilities release is installed, the sub-directories are
updated with the new symbolic links. This release will be the Active TTU of the system. See
MultiVersion Support for more information.

The following table shows the release-independent directories.

On UNIX or Linux systems, the Teradata Tools and Utilities installation includes an option
to uninstall previous versions of existing Teradata Tools and Utilities software. Any
Teradata Tools and Utilities release version prior to 15.10.01 must be uninstalled before
installing ODBC Driver for Teradata. This does not apply to efixes, because efixes are
installed as an upgrade.

For information about installing operating system-specific utilities, see the documentation
listed on http://www.info.teradata.com. Depending on the Teradata Tools and Utilities
version installed, the actual value represented by <ttu version> might display as the
version number.

/opt teradata/
client/

ODBC_32/
include -> /opt/teradata/client/<TTU version>/include\

lib -> /opt/teradata/client/<TTU version>/lib\

locale -> /opt/teradata/client/<TTU version>/odbc_32/locale\

odbc.ini

odbcinst.ini

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 13

http://www.info.teradata.com

/opt teradata/
client/

ODBC_64/
include -> /opt/teradata/client/<TTU version>/include

lib -> /opt/teradata/client/<TTU version>/lib64

locale -> /opt/teradata/client/<TTU version>/odbc_64/locale\

odbc.ini

odbcinst.ini

Apple OS X Information
This section describes the directory tree structure on Apple OS X.

Pathname Description

/Library/Application Support/teradata/
client/ODBC/lib/libtdsso.dylib

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/lib/libtdsso.dylib'

/Library/Application Support/teradata/
client/ODBC/lib/tdataodbc_sbu.dylib

symbolic link to '/Library/Application
Support/teradata/client/16.20/lib

/Library/Application Support/teradata/
client/ODBC/lib/TeradataODBCSetup.bundle

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/lib/
TeradataODBCSetup.bundle'

/Library/Application Support/teradata/
client/ODBC/lib/TdConnectionDialog.bundle

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/lib/
TdConnectionDialog.bundle'

/Library/Application Support/teradata/
client/ODBC/include

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/include'

/Library/Application Support/teradata/
client/ODBC/lib

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/lib'

/Library/Application Support/teradata/
client/<TTU version>/odbc/bin/tdxodbc

ODBC Connection test tool

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 14

Pathname Description

/Library/Application Support/teradata/
client/<TTU version>/include/tdsql.h

Teradata ODBC Driver custom
definitions

/Library/Application Support/teradata/
client/<TTU version>/lib/libtdsso.dylib

Teradata SSO library

/Library/Application Support/teradata/
client/<TTU version>/lib/tdataodbc_sbu.dylib

Teradata ODBC driver

/Library/Application Support/teradata/
client/<TTU version>/odbc/lib/
TdConnectionDialog.bundle

Teradata ODBC Driver connection
dialog

/Library/Application Support/teradata/
client/<TTU version>/lib/
TeradataODBCSetup.bundle

Teradata ODBC Setup dialog

/Library/Application Support/teradata/
client/<TTU version>/odbc/odbc.ini

Sample odbc.ini file

/Library/Application Support/teradata/
client/<TTU version>/odbc/README

README

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C/adhoc

Sample ODBC application binary

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C/adhoc.c

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C/
common.includes

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C/error.c

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C/Makefile

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C++/adhoc

Sample ODBC application binary

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C++/
adhoc.cpp

Sample ODBC application code

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 15

Pathname Description

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C++/
common.includes

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C++/
error.cpp

Sample ODBC application code

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples/C++/
Makefile

Sample ODBC application code

/Library/Application Support/teradata/
client/ODBC/odbc.ini

Sample odbc.ini file

1: Overview

ODBC Driver for Teradata® User Guide, Release 16.20 16

Overview
This chapter provides information on data sources and variables used with the UNIX OS
version of ODBC Driver for Teradata and how to configure the driver using the odbc.ini file.

For information about configuring the Windows version of ODBC Driver for Teradata, see
Configuration for Windows.

For information about configuring ODBC Driver for Teradata for Apple OS X, see
Configuration for Apple OS X.

ODBC Directories
During installation on 64-bit systems, ODBC directories are created for 32-bit, 64-bit, and
their respective release-independent directories. On 32-bit systems, only 32-bit directories
are created. The 32-bit and 64-bit directories are placed under the Teradata Tools and
Utilities release directory. Release independent directories are created at the same directory
level as the Teradata Tools and Utilities release directories. Release independent directories
provide a way to set up the odbc.ini and odbcinst.ini files without having to change them
when future Teradata Tools and Utilities releases are installed.

Subdirectories for the 32-bit and 64-bit directories are listed in the following table.

Directory Contents

bin Home for executables and scripts used to manage and support the ODBC
Driver for Teradata

include Driver Manager and ODBC Driver for Teradata include files

lib Driver Manager and ODBC Driver for Teradata libraries

locale Driver Manager message file

ErrorMessages Teradata ODBC Driver message catalog

samples C and C++ sample application

The release-independent directories are given the upper case names ODBC_32 and
ODBC_64. Their sub-directories are symbolic links to their respective 32-bit and 64-bit
Teradata Tools and Utilities release directories. ODBC_32 and ODBC_64 installations

Configuration for UNIX/Linux Systems

2

ODBC Driver for Teradata® User Guide, Release 16.20 17

contain their respective odbc.ini and odbcinst.ini files which are free of any use of a
Teradata Tools and Utilities release path. It is required that these templates be used when
setting up the odbc.ini with the desired DSN settings. Otherwise, the user will be
continuously updating the .ini files when different Teradata Tools and Utilities releases are
installed. In particular, the path values in the odbc.ini template for InstallDir and Driver must
be the ones defined in the template; they cannot be modified.When a new Teradata Tools
and Utilities release is installed, the sub-directories are updated with new symbolic links.

Note:

If there are multiple versions of the driver (such as 16.00 and 16.10) installed on the
system, then the symbolic links will be pointing to whichever version was installed most
recently.

Coexistence of Different Version Drivers on the Same Machine
For ODBC Driver for Teradata starting with 15.10.10.00, for UNIX bundle, Windows, and OS
X Suites, multiple releases can co-exist on the same system. For example, 15.10.10.00,
16.10.00.00 and later versions can co-exist on the system at the same time.

If a specific version of the driver that is not the active TTU version is needed by an
application, then the ODBCINI environment variable must be set to <InstallDir>/Teradata/
client/<desired version>/odbc_32/odbc.ini for 32 bit or <InstallDir>/Teradata/client/
odbc_64/odbc.ini for 64-bit, and that odbc.ini file must be updated accordingly.

.env Files

Another option is to use the .env files provided for each OS. The .env files are located in
<prefix>/teradata/client/16.20/<etc>.

For UNIX and OS X:

• ttu_1620_bash.env

• ttu_1620_csh.env

For AIX:

• ttu32_1620_bash.env

• ttu32_1620_csh.env

• ttu64_1620_bash.env

• ttu64_1620_csh.env

The .env file can be sourced in a terminal window so that release is active in that session.

2: Configuration for UNIX/Linux Systems

ODBC Driver for Teradata® User Guide, Release 16.20 18

Verifying the TCP/IP Connection
Verify that the client system can connect over TCP/IP to the server using a domain name
server (DNS) or a local hosts file. Use the tdxodbc or tdxodbc64 program in the <InstallDir>/
Teradata/client/<TTU version>/bin directory to verify the connection and successful loading
of the Teradata ODBC driver.

The local hosts file contains the names and IP addresses of system nodes that support the
Teradata network communication interface.

Configuring a UNIX System

NOTICE
It is strongly recommended you do not update LIBPATH.

The driver provides a script to switch between 64-bit and 32-bit. As another option, the .env
file can be sourced for 32-bit or 64-bit.

Setting Additional Environment Variables (optional)
The following table lists additional optional environment variables.

Variable Name Function

ODBCINI Specifies a different pathname for the odbc.ini file

LANG Enables a supported character set to work with ODBC Driver for
Teradata

Setting LANG
To enable Kanji, Chinese, or Korean support, the LANG environment variable must be set
to the appropriate character setting. For example, use the following to set the language for
Japanese:

export LANG=japan

Note:

Please refer to your Unix system for supported locales and correct values.

For the UTF8 session character set, set the environment variables to UTF8 for the UTF8-
based text processing.

2: Configuration for UNIX/Linux Systems

ODBC Driver for Teradata® User Guide, Release 16.20 19

• setenv LANG en_US.UTF8

• setenv LC_ALL en_US.UTF8

For additional information about international language support, see International
Character Set Support.

Configuring DSN in odbc.ini
For information on configuring a DSN, see Configuration of odbc.ini in UNIX/Linux and Apple
OS X.

iODBC and unixODBC Driver Manager Installation
The Teradata installer comes with the DataDirect driver manager installed, but you can
follow the steps in the procedures below to use a different driver manager.

• Installing your Chosen Driver Manager

• Selecting the Chosen Driver Manager

Installing your Chosen Driver Manager
1. Download your driver manager of choice from their official website.

Typical driver managers used on Unix are iODBC or unixODBC.

Note:

iODBC is the choice made by Apple for their Mac Operating System, and unixODBC
is a popular choice on Unix systems.

The web sites are provided below:

• http://www.iodbc.org

• http://www.unixodbc.org

2. Based on your application bitness, you need to match the bitness (32- or 64-bit) of your
installed Teradata ODBC driver and the Driver Manager bitness you install.
a. Download the correct bitness or compile the source for the right bitness (typically

based on the CFLAGS settings).

Note:

You can have both a 32-bit and 64-bit version of the driver manager installed.
They default to different locations and your odbc.ini, and odbcinst.ini should
reference them correctly.

2: Configuration for UNIX/Linux Systems

ODBC Driver for Teradata® User Guide, Release 16.20 20

http://www.iodbc.org
http://www.unixodbc.org

Tip:

When using your application or testing the connection, if you encounter errors
related to “ELF”, it is likely due to you mismatching the bitness between application,
driver manager and/or Teradata ODBC driver.

You can typically check the bitness of a file on Unix systems by using the “file” command
in a shell, and pass in the filename with path if needed.

3. Install your driver manager.
You may need root access depending on where you install. Consult the driver manager's
documentation for more information.

Selecting the Chosen Driver Manager
1. Update your LD_LIBRARY_PATH with a path to the Driver Manager chosen.

For example, if you installed the Driver Manager in /usr/local/lib, you can run the
following command to set the LD_LIBRARY_PATH for the current user session:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

iODBC and unixODBC Driver Manager Connection Testing
To test the connection, you can use an ODBC-enabled client application. For a basic
connection test, you can also use the test utilities that are packaged with your driver
manager installation.

For example, the iODBC driver manager includes simple utilities called iodbctest and
iodbctestw. Similarly, the unixODBC driver manager includes simple utilities called isql and
iusql.

Using the iODBC Driver Manager
You can use the iodbctest and iodbctestw utilities to establish a test connection with your
driver. Use iodbctest to test how your driver works with an ANSI application, or use
iodbctestw to test how your driver works with a Unicode application.

Note:

There are 32-bit and 64-bit installations of the iODBC driver manager available. If you
have only one or the other installed, then the appropriate version of iodbctest (or
iodbctestw) is available. However, if you have both 32- and 64-bit versions installed,
then you need to make sure that you are running the version from the correct
installation directory.

For more information about using the iODBC driver manager, see http://www.iodbc.org.

2: Configuration for UNIX/Linux Systems

ODBC Driver for Teradata® User Guide, Release 16.20 21

http://www.iodbc.org

Testing Your Connection Using the iODBC Driver Manager

1. Run iodbctest or iodbctestw.

Tip:

Optionally, if you do not remember the DSN, then type a question mark (?) to see
a list of available DSNs.

2. Type the connection string for connecting to your data store, and then press Enter.
If the connection is successful, then the SQL> prompt appears.

Using the unixODBC Driver Manager
You can use the isql and iusql utilities to establish a test connection with your driver and
your DSN. isql and iusql can only be used to test connections that use a DSN.

Use isql to test how your driver works with an ANSI application, or use iusql to test how your
driver works with a Unicode application.

Note:

There are 32-bit and 64-bit installations of the unixODBC driver manager available. If
you have only one or the other installed, then the appropriate version of isql (or iusql)
is available. However, if you have both 32- and 64-bit versions installed, then you need
to make sure that you are running the version from the correct installation directory.

For more information about using the unixODBC driver manager, see .

Testing Your Connection Using the unixODBC Driver Manager

1. Run isql or iusql by using the corresponding syntax:

• isql [DataSourceName]

• iusql [DataSourceName]

where [DataSourceName] is the DSN that you are using for the connection.

If the connection is successful, then the SQL> prompt appears.

Note:

For information about the available options, run isql or iusql without providing a
DSN.

2: Configuration for UNIX/Linux Systems

ODBC Driver for Teradata® User Guide, Release 16.20 22

http://www.unixodbc.org

Overview
This chapter provides instructions for configuring a data source and ODBC Driver for
Teradata on Windows systems

For information about the UNIX system versions of ODBC Driver for Teradata, see
Configuration for UNIX/Linux Systems.

For information about ODBC Driver for Teradata for Apple OS X, see Configuration for Apple
OS X.

Windows ODBC Driver Directories
ODBC Driver for Teradata is installed on Windows following the instructions from Teradata
Tools and Utilities Installation Guide for Microsoft Windows (B035-2407).

During installation of ODBC Driver for Teradata, the following directories are created:

<user_defined>\Teradata\Client\<version>\ODBC Driver for Teradata\
\ErrorMessages
\Help
\Samples
Readme.txt
tdodbcdsn.vbs
tdsql.h

<user_defined>\Teradata\Client\<version>\bin\

libcrypto-1_1-x64.dll or libcrypto-1_1.dll
sbicudt53_64.dll or sbicudt53_32.dll
sbicuin53_64.dll or sbicuin53_32.dll
sbicuuc53_64.dll or sbicuuc53_32.dll
tdataodbc_sb64.dll or tdataodbc_sb32.dll
tdclientdir
tdxodbc
TeradataODBC.did
TeradataODBC64.man or TeradataODBC32.man
terasso.dll

Configuration for Windows

3

ODBC Driver for Teradata® User Guide, Release 16.20 23

Configuring a Data Source
For ODBC Driver for Teradata, both 32-bit and 64-bit drivers can coexist on the same
system.

For Windows 10 and Windows 2016, the location of the 32-bit and 64-bit ODBC Data
Sources start menu item is located in Windows Administrative Tools for ODBC Data Sources
(32-bit) and ODBC Data Sources (64-bit).

To set up a data source name (DSN) for each type of configuration:

• To set up DSNs for a 32-bit driver, open the 32-bit ODBC Data Source Administrator
dialog box by selecting Start > Programs > ODBC > 32-Bit ODBC Administrator. Then
follow the instructions from Configuring a Data Source using ODBC Data Source
Administrator.

• To set up DSNs for a 64-bit driver, open the 64-bit ODBC Data Source Administrator
dialog box by selecting Start > Programs > ODBC > 64-Bit ODBC Administrator Then
follow the instructions from Configuring a Data Source using ODBC Data Source
Administrator.

Note:

The ODBC Data Source Administrator does not distinguish between 32-bit and 64-bit
user DSNs as they both reside in the same location of the Windows registry.

Coexistence of Different Version Driver on the Same Machine
For ODBC Driver for Teradata starting with 15.10.10.00, for UNIX bundle, Windows, and OS
X Suites, multiple releases can co-exist on the same system. For example, 15.10.10.00,
16.10.00.00 and later versions can co-exist on the system at the same time.

To set up a data source name (DSN) for the desired version, follow the instructions from
Configuring a Data Source using ODBC Data Source Administrator.

Configuring a Data Source using ODBC Data Source
Administrator
Use the ODBC Data Source Administrator dialog box to configure data sources for each
Teradata system to be accessed. One or more data sources must be configured.

ODBC Driver for Teradata has established specific application uses for available DSN
settings.

For DSN settings and their specific application use, see ODBC Driver for Teradata
Application Development.

For information on disabling the ability to save the password in a DSN, see Security
Considerations.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 24

To configure a data source:

1. Open the Control Panel and navigate to Control Panel > System and Security >
Administrative Tools.

2. In the Administrative Tools window, double-click ODBC Data Sources to open the ODBC
Data Source Administrator dialog box.

3. The User DSN and System DSN tabs list the names of existing data sources for the user
and for all users of the system, respectively. To edit an existing data source, select it
and click Configure. To create a new data source for Teradata Database, select the
Teradata Database ODBC Driver with the desired version, click Add.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 25

4. In the Data Source Name pane of the Create New Data Source dialog box, select
Teradata Database ODBC Driver 16.20. Click Finish and the Teradata16.20 ODBC
Driver DSN Setup dialog box appears.

5. In the dialog box, fill in or modify the required information to identify the data source.
The OK button for this dialog box does not become available unless the Name box in
the Data Source group box and the Teradata Server Info Name(s) or IP address(es)
group box are filled in.

ODBC Driver Setup Parameters
Field, Check
Box, or
Button Description

Data Source group box

Name Enter the Data Source Name (DSN) that the application is to refer to when
executing SQLConnect or SQLDriverConnect. The entered DSN is the

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 26

Field, Check
Box, or
Button Description

name that will appear in the Data Sources dialog box during a manual
connection.

See the “data-source-name=<driver>” option in ODBC Data Sources
Section.

Description [Optional] Enter descriptive text about the data source in this box.

This is a comment field that is not retrievable by an SQL or ODBC
command.

See the “Description=<data-source-desc>” option in Data Source
Specification Section.

Test Connection

Username
and
password

Enter Username and password to test connection.

Buttons

OK Save changes to this dialog box.

Cancel Cancel changes to this dialog box.

Help Obtain help about this dialog box.

Teradata Server Info

Name or IP
address

Perform one of the following:
• Enter the Teradata Database name (alias or FQDN) without COP

suffix.
• Enter the name or IP address of the LAN-connected node in your

system, one per line.

After providing the name, ODBC Driver for Teradata dynamically detects
all associated COP entries.

You must define COP names or the name without COP suffix in either a
Domain Name Services (DNS) or the local hosts file. For more
information, see Cop Discovery.

Authentication group box

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 27

Field, Check
Box, or
Button Description

Use
Integrated
Security

Default = Cleared

Clear this check box to enable the user to connect to the database using
Conventional Sign On (CSO).

Select this check box to enable the user to connect to the database using
Single Sign-On (SSO).

In CSO from a network client, the user must provide a Teradata Database
username and password. These are sent to Teradata Database for
validation. If the username exists and the password correctly matches,
access is allowed. Otherwise, the connection request is rejected.

In SSO, the username and password are not submitted. The Teradata
Database username is derived from the user identity on the client
platform.

Mechanism Default = determined by a configuration option set in an XML file by
TeraGSS program, tdgssconfigure.

Specify the desired security checking mechanism. Valid values are:
• Empty – the same as omitting the keyword
• TD2 – selects Teradata 2 as the authentication mechanism.

Username and password are required.
• TDNEGO – selects one of the Authentication Mechanisms

automatically based on the policy, without user involvement.
• LDAP – selects Lightweight Directory Access Protocol (LDAP) as the

Authentication Mechanism. The application provides the username
and password.

• KRB5 – selects Kerberos (KRB5) on Windows clients working with
Windows servers. The application provides the username and
password.

• JWT – selects JSON Web Token (JWT) as the Authentication
Mechanism. An authentication mechanism based on the JWT needs
to be provided in the form of "token=<JWT token>" where <JWT token> is
the actual JWT token.

See complete descriptions at Authentication Mechanisms.

Parameter Users cannot enter parameters in this field. Instead, click the Change
button located to the right of the field, and a new dialog box opens,
allowing the parameter to be entered.

Once a parameter is entered, the text will be masked with * characters.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 28

Field, Check
Box, or
Button Description

Indicate a string of characters to be regarded as a parameter of the
authentication mechanism. The string is opaque to ODBC Driver for
Teradata and is passed to the Teradata authentication software called
to set the mechanism.

Enclose characters [] {} () , ; ? * = ! @ in braces.

You can use a Teradata Wallet reference string instead of a plain text
parameter by specifying the $tdwallet() token. For example:

$tdwallet(WalletRefString)

For more information, see Teradata Wallet.

Username Default = Cleared

Specify a username for the default Teradata Database.

Shows the default username that was specified during the data source(s)
configuration of the driver. The default value can be overridden here. If
required, the user is prompted for additional information. The username
and password are Teradata-specific, not to be confused with Windows
user ids and passwords.

The username is interpreted in the context of the authentication
mechanism. If, for example, the authentication mechanism is NTLM, then
the username is assumed to be a Windows username.

If the authentication mechanism allows fully qualified usernames, then the
username can contain a domain or realm; for example, {judy@linedata}.
Values containing a character such as @ must be enclosed in braces.

SSO is indicated by the absence of a Username and Password.

See the “Username=<name>” option in Data Source Specification
Section.

Password [Optional] The password required for the default Username.

Not applicable on Apple OS X.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 29

Field, Check
Box, or
Button Description

Note:

Password stored locally (Windows registry) in encrypted form, but storing
sensitive information in DSN is not 100% secure. Using this feature is not
recommended, because it is deprecated.
For more information, see Deprecated SQL Transformations.

For information on disabling the ability to save the password in a DSN, see
Security Considerations.

Instead of storing the actual password in DSN, it is recommended to use
a Teradata Wallet reference string as a password. Password and
Teradata Wallet String fields are mutually exclusive, so a DSN can have
either the Password or a Teradata Wallet String.

For more information, see Teradata Wallet.

Teradata
Wallet String

Enter and save a Teradata Wallet reference string as password for the
user. Do not need to enclose the Teradata Wallet reference string in
$tdwallet() token.

It is recommended to use Teradata Wallet Reference string instead of
saving the actual password in DSN. Password and Teradata Wallet String
fields are mutually exclusive, so a DSN can have either the Password or a
Teradata Wallet String.

For more information, see Teradata Wallet.

Optional group box

Default
Database

Default = Cleared

Specify a default database.

See the “DefaultDatabase=<database-name>” option in Data Source
Specification Section.

Account
String

Default = Cleared

Enter a user in Teradata Database while configuring the data source
rather than having to provide account information during configuration of
ODBC Driver for Teradata.

This information can be used to help isolate users, to find out what
application the users are running, or to restrict users from logging on.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 30

Field, Check
Box, or
Button Description

See the “AccountStr=<account>” option in Teradata DSN Options.

Session
Character
Set

Default = ASCII

Specify the character set for the session. It is strongly recommended to
use the default ASCII session only for 7-bit ASCII characters. UTF8 is the
recommended default session character set for all languages including US
English. To use a different character set than is chosen by default, specify
or select it here.

The options available from the drop-down list are:
• ASCII
• UTF8
• UTF16
• LATIN1252_0A
• LATIN9_0A
• LATIN1_0A
• Shift-JIS (Windows, DOS compatible, KANJISJIS_0S)
• EUC (Unix compatible, KANJIEC_0U)
• IBM Mainframe (KANJIEBCDIC5035_0I)
• KANJI932_1S0
• BIG5 (TCHBIG5_1R0)
• GB (SCHGB2312_1T0)
• SCHINESE936_6R0
• TCHINESE950_8R0
• NetworkKorean (HANGULKSC5601_2R4)
• HANGUL949_7R0
• ARABIC1256_6A0
• CYRILLIC1251_2A0
• HEBREW1255_5A0
• LATIN1250_1A0
• LATIN1254_7A0
• LATIN1258_8A0
• THAI874_4A0

Note:

See the note in Session Character Sets and Translation DLLs for more
information on restrictions.

Note:

For user-defined session character sets that are not shown on the above
list, type the name of the user-defined session character set.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 31

Teradata ODBC Driver Options
Click the Options button in the ODBC Driver Setup for Teradata Database dialog box for
the Driver Options dialog box to appear. Use this dialog box to configure additional options
and formats. Teradata ODBC Driver Options are listed in the table below.

Field, Check
Box, or
Button Description

Use Column
Names

Default = Selected

Determines whether ODBC Driver for Teradata returns column names or
column titles.

See the “DontUseTitles=[Yes|No]” option in Teradata DSN Options.

Use X Views Default = Cleared

Determines whether the X View is used.

See the “UseXViews=[Yes|No]” option in Teradata DSN Options.

No HELP
DATABASE

Default = Cleared

Determines whether the Help Database is used.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 32

Field, Check
Box, or
Button Description

See the “DontUseHelpDatabase=[Yes|No]” option in Teradata DSN
Options.

Ignore Search
Patterns

Default = Cleared

Determines whether search pattern characters _ and % are used in
search patterns or are passed as regular characters.

See the “IgnoreODBCSearchPattern=[Yes|No]” option in Teradata DSN
Options.

Disable
Parsing

Default = Cleared

Disables or enables parsing of SQL statements by ODBC Driver for
Teradata. When parsing is enabled, the driver parses SQL statements
and transforms ODBC escape sequences into SQL.
• When selected, ODBC Driver for Teradata does not parse SQL

statements.
• When cleared, SQL statements are parsed.

See the “NoScan=[Yes|No]” option in Teradata DSN Options.

Log Error
Events

Default = Cleared

When selected, ODBC Driver for Teradata performs error logging that
appears in the Event Viewer.

When cleared, error logging is not performed.

Use Regional
Settings for
Decimal
Symbol

Default = Selected

(Windows) Allows the application to decide which symbol is used as a
decimal separator while retrieving decimal data.

When selected, ODBC Driver for Teradata uses regional settings to
determine the decimal symbol.

If cleared, ODBC Driver for Teradata uses a “.” character as the decimal
symbol and ignores the regional settings.

Enable Data
Encryption

Default = Cleared

When Enable Data Encryption is checked – the option directs the ODBC
Driver to use Data Encryption, causing ODBC Driver for Teradata and
Teradata Database to communicate with each other in encrypted
manner.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 33

Field, Check
Box, or
Button Description

When Enable Data Encryption is cleared–Data Encryption is disabled.

Enable
Extended
Statement
Information

Default = Selected

Determines whether extended statement information is to be used by
ODBC Driver for Teradata, provided that it is available from Teradata
Database. Database versions from V2R6.2 and up support extended
statement information, including metadata for parameters used in SQL
requests and columns in result sets.

When EnableExtendedStmtInfo is Selected – ODBC Driver for Teradata
requests and uses extended statement information from the database if
supported. If extended statement information is available, then the ODBC
API function SQLDescribeParam is supported and SQLGetFunctions
returns SQL_TRUE (supported) for SQL_API_SQLDESCRIBEPARAM.

When EnableExtendedStmtInfo is cleared – ODBC Driver for Teradata
does not request or use extended statement information from the
database, even if supported. If extended statement information is
unavailable, SQLDescribeParam is not supported and SQLGetFunctions
returns SQL_FALSE (not supported) for
SQL_API_SQLDESCRIBEPARAM.

Session Mode Specifies the mode (Teradata or ANSI) for sessions on Teradata
Database. The selected mode applies for the duration of the session.

The default value is determined by the database based on the option
used in the Teradata Database CREATE or MODIFY USER statement.

DateTime
Format

Assigns the ANSI formats for DATE, TIME, and TIMESTAMP.

The default setting is AAA. IAA is optional. Because the Integer data type
has been deprecated for the TIME format, it is not recommended. For
information, see Integer Time.

See the “DateTimeFormat=[A|I]AA” option in Teradata DSN Options.

Return
Generated
Keys

Default = No

Determines the result from requests that insert into identity columns
(INSERT, INSERT ... SELECT, UPSERT, MERGE-INTO). These requests
can optionally return a result set containing identity column values (also
known as auto-generated keys) for the inserted rows.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 34

Field, Check
Box, or
Button Description

Auto-generated key retrieval is not supported in Teradata Database
versions prior to V2R6.2. The setting of Return Generated Keys has no
effect when using a pre-V2R6.2 database server.

Valid values are No, Identity Column, and Whole Row:
• No = Auto-generated key retrieval is disabled (default)
• Identity Column = Retrieve identity column only
• Whole Row = Retrieve entire row(s)

When Return Generated Keys is set to Identity Column or Whole Row, a
request that inserts into tables containing identity columns returns two
results: a row count with the number of inserted rows and a result set
containing either the auto-generated keys as a single column or the
complete rows inserted. The insert request becomes similar to a macro
that first inserts and then selects the identity column or all columns of
the rows just inserted.

When Return Generated Keys is set to No, the behavior of requests that
insert into identity columns is not changed.

UPT Mode Default = NOTSET

Enables Unicode Pass Through Mode for the ODBC Application.

The default value is NOTSET, which means that the UPT Mode set by the
database is used. The ODBC Driver for Teradata does not send anything
to the database when this option is set.

UPTON: ODBC Driver for Teradata sends “SET SESSION CHARACTER
SET UNICODE PASS THROUGH ON” to the database while connecting,
thereby enabling UPT MODE for that session.

UPTOFF: ODBC Driver for Teradata sends “SET SESSION CHARACTER
SET UNICODE PASS THROUGH OFF” to the database while connecting,
thereby disabling UPT MODE for that session.

See the "UPTMode=[NotSet|UPTOn|UPTOff]" option in Teradata DSN
Options.

UDF Upload

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 35

Field, Check
Box, or
Button Description

Enable Client
Side UDF
Source

Default=Cleared.

If this is unchecked, the driver will not support UDF source file uploads.

See the "EnableUDFUpload=[Yes|No] option in Teradata DSN Options.

UDF Upload
Path

Fully qualified path where source files will be found. If defined, the driver
looks at this location for files the database requests, unless the database
gives a fully qualified path as part of the file name.

No relative paths using “..” are allowed in this value.

The default value displayed in the field (Please enter the UDF folder
path) MUST be changed to the value you wish to use (either a valid path
or empty). Delete the default value to leave the field empty.

If Enable Extended Statement Information is checked:
• The path you specify in UDF Root Directory will be prepended to all

file names specified with an EXTERNAL NAME clause of a CREATE
FUNCTION or REPLACE function.

• To use fully qualified file names in EXTERNAL NAME clauses, leave
this field empty.

See "UDFUploadPath=<path>" option in Teradata DSN Options.

Warning group box

Advanced Click to bring up the dialog box. The dialog box contains further setting
options available; however, it is strongly recommended NOT to change
these settings.

Teradata ODBC Driver Advanced Options
Click the Advanced button in the Warning area of the Teradata ODBC Driver Options dialog
box to see further options available. The Advanced Options dialog box appears. The table
below lists the advanced options.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 36

Advanced Options Caution

Note:

It is strongly recommended NOT to change the settings in the Advanced Options
dialog box.

Field, Check Box, or Button Description

Maximum Response Buffer
Size

Default = 65536 (64K)

Enter the value used to try to limit the Teradata response
buffer size for SQL requests. This value can be adjusted
dynamically if Teradata cannot send a result within the
limited packet size defined.

See the “MaxRespSize=<integer 16775168>” option in
Teradata DSN Options.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 37

Field, Check Box, or Button Description

TDMST Port Number Default = 1025

Lists the port number to use to access Teradata
Database. Do not change this value unless instructed to
do so by Technical Support.

See the “TDMSTPortNumber=<integer>” option in
Teradata DSN Options.

Translation DLL Name Specifies the translation DLL path. Translation DLL is
used to convert between session character set and
application character set.

See Session Character Sets and Translation DLLs.

Translation Option Specifies the translation DLL option. The option is used by
translation DLL.

See Session Character Sets and Translation DLLs.

Login Timeout Default = 20

Defines a value corresponding to the number of seconds
to wait when establishing a virtual circuit with Teradata for
login. Enter an integer value.

See Teradata DSN Options.

ProcedureWithPrintStmt Default = N

Activates the print option when creating stored
procedures.

See the “PrintOption=[N | P]” option in Teradata DSN
Options.

ProcedureWithSPLSource Default = Y

Specifies the SPL option when creating stored procedures.

See the “SplOption=[Y | N]” option in Teradata DSN
Options.

Data Source DNS Entries The Data Source DNS Entries DSN option notifies the
ODBC Driver for Teradata how many entries are defined in
DNS for the database name. The initial value of this option
controls how the ODBC Driver for Teradata resolves
database names to IP addresses. If this value is not set,
the default value is undefined (empty). If multiple database

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 38

Field, Check Box, or Button Description

names are provided in ODBC DSN, the Data Source DNS
Entries option is applicable to all names.

Note:

If a database is identified by IP address instead of a name
in the ODBC DSN or connection-string, the Data Source
DNS Entries option is ignored. The database is identified
in the Name(s) or IP address(es) field described in ODBC
Driver Setup Parameters.

Data Source DNS Entries=undefined (default setting) is
recommended for best results. This setting enables the
ODBC Driver for Teradata to lookup DNS dynamically and
find all available COPs for a given database name. Using
this approach, ODBC Driver for Teradata will automatically
detect new nodes added to the Teradata database (and
DNS) in the future, without ODBC modification. For more
information, see Resolving a Data Source Name.

Data Source DNS Entries= 0 indicates that DNS does not
contain cop entries for the database name. The database
name will only be resolved by itself. No attempt will be made
to resolve using a cop suffix. This behavior can be desirable
in an environment utilizing DNS to load balance. When DNS
is used for load balancing, administrators can configure
DNS to provide a different IP address or multiple IP
addresses in different order each time the database name
is resolved using DNS.

Data Source DNS Entries= value. Entering a non-zero
value indicates that DNS contains cop entries for the
database name and the last cop entry is value. The first
connection attempt will chose a random number between
1 and value. Each subsequent connection will then
increment to the next number (round-robin). This approach
will not encounter costly DNS resolution failures (how
costly depends on how the DNS is configured). However, if
additional entries are added to DNS at a later time, they
will not be discovered by the ODBC Driver for Teradata
unless the supplied value is increased.

Use TCP_NODELAY Default = Selected

Valid for the Teradata DSN in ODBC Driver for Teradata.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 39

Field, Check Box, or Button Description

Transmission Control Protocol (TCP) provides an option
called TCP_NODELAY to control the transmission of data.

See the “TCPNoDelay=[Yes | No]” option in Teradata DSN
Options.

Use NULL for Catalog Name Default = Cleared

When this option is selected – NULL values are assumed
for the Catalog Name parameters in any of the Catalog
API functions, even if the application passes a value.

When this option is cleared and a value is passed for the
Catalog Name parameter instead of NULL – ODBC Driver
for Teradata returns an error because catalogs are not
supported by Teradata Database.

Enable Read Ahead Default = Selected

When this option is selected - the ODBC Driver reads
ahead by requesting the next response message from the
database when the current response message being
processed is not the last. The database can have one
request active for each session at any point in time. An
active request is either an SQL request which is executing
or a request for the next part of the result from an earlier
SQL request.

When this option is cleared - the ODBC Driver only
requests the next response message from the database
when the current response message has been processed
by the driver.

Retry system calls (EINTR) Default = Selected

When this option is cleared – the ODBC Driver returns an
SQL_ERROR to the ODBC Application. The ODBC
Application is responsible for recovery from the interrupted
socket system calls.When this option is selected – the
ODBC Driver is responsible for retrying the socket system
calls when they have been interrupted by some event such
as a SIGALRM.

SLOB Options group box

Max Single LOB Bytes Unsigned int 32

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 40

Field, Check Box, or Button Description

Default value is 4000:

The maximum size in byte for LOB data to be returned as
SLOBs for each row. 0 means the feature is disabled.

Max Total LOB Bytes Per
Row

Unsigned int 32

Default value is 65536:

The maximum size in byte for LOB data to be returned as
SLOBs for each row. 0 means the feature is disabled.

Use Sequential Retrieval
Only

Boolean

Default values is false:

This is a performance-related setting. It indicates that only
sequential retrieval or random access will be used.

If sequential retrieval only is enabled, the driver will not
cache the data for SLOBs. It retrieves data faster by
skipping the caching step.

It also means if sequential only is set and the client
performs random access, performance will be downgraded
because the data is retrieved using a deferred LOB.

If random access is required, each SLOB data will be
cached for later use/reuse. This slows the retrieval process,
but permits the client to return to the data at a later time.

Custom Options group box

Use DATE data for
TIMESTAMP parameters

Default = Cleared

When this option is selected– ODBC Driver for Teradata is
directed to send DATE data for parameters bound as
SQL_C_TIMESTAMP and SQL_TIMESTAMP.

This option should not be enabled for applications that are
not using Microsoft Access Jet databases.

This option should only be selected for this circumstance,
as this results in truncation of SQL_C_TIMESTAMP data
to contain only the DATE portion.

When this option is selected
– the ODBC DriverEnable

Default = Cleared

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 41

Field, Check Box, or Button Description

Custom Catalog Mode for
2.x Applications

Provides backwards compatibility for ODBC 2.x
applications that have taken advantage of a defect in the
ODBC Driver where the functionality of the Catalog APIs
are noncompliant with the ODBC Programmer's Reference
specification.

The behavior when a NULL value is passed to the
SQLTables API for the SchemaName argument results in
a search for tables belonging to the userid, DBC, and
default database schema names, rather than a % search
pattern as noted in the ODBC Programmer's Reference
specification.

Return Empty string in
CREATE_PARAMS column
for SQL_TIMESTAMP

Default = Cleared

Returns an empty string for the CREATE_PARAMS column
of SQLGetTypeInfo for SQL_TIMESTAMP data type, and
disallows MC-ACCESS from using any TIMESTAMP
precision value in Create Table text.

Return max. CHAR/
VARCHAR length as 32K

Default = Cleared

Returns a value of 32000 (in general, could be 64000
also) for COLUMN_SIZE column of SQLGetTypeInfo for
SQL_CHAR and SQL_VARCHAR data types. This allows
MS-ACCESS to handle column size value returned by
ODBC Driver for Teradata without any numeric overflow.

Upon completion, return to each previous screen in the sequence by clicking the OK button.

After entering the required information into the Teradata Database ODBC Driver 16.20
DSN Setup dialog box, click OK.

The data source that you just configured displays in the user Data Sources list of the ODBC
Data Source Administrator dialog box.

To continue adding data sources, repeat the process.

Reconfiguring a Data Source
The following topics describe how to modify an existing data source configuration for ODBC
Driver for Teradata.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 42

Modifying a Data Source
1. Select the data source name from the User DSN or the System DSN tab of the ODBC

Data Source Administrator dialog box and click the Configure button.

2. Make editing changes.

3. Click OK when the configuration is complete.

Deleting a Data Source
1. Select the data source name from the User DSN tab or the System DSN tab of the

ODBC Data Source Administrator dialog box and click the Remove button.

2. Confirm the deletion by clicking the Yes button when the ODBC Administrator dialog box
appears.

3. Click OK from the ODBC Data Source Administrator dialog box when the configuration
is complete.

Resolving a Data Source Name
ODBC Driver for Teradata can connect to Teradata Database using an IP-address (IPv4 or
IPv6), an alias name, or a Fully Qualified Domain Name (FQDN).

Cop Discovery
The ODBC Driver for Teradata determines if a DNS contains cop entries for the database
name. The first attempt to resolve the database name has a cop1 suffix appended. Cop
discovery is disabled if a cop1 entry is not defined in DNS. All resolutions will be made for
this name without adding the cop suffix, and no further attempts to resolve cop1 will be
attempted.

If an entry for cop1 is found in DNS, then it is assumed that DNS contains further cop entries
for the database name. However, the number of entries is not known. Subsequent
resolutions will increment to the next number and attempt to find an entry in DNS. The first
entry that is not found in DNS marks the last entry for the given name. At that point the list
of DNS entries is complete. The first connection attempt chooses a random number
between the first and last cops found. Each subsequent connection will increment to the
next number (round-robin).

If multiple database names are provided in ODBC DSN, and the first name has no cops
defined, all names will be resolved without adding a cop suffix. No attempt will be made to
find the number of cops defined.

In order for the ODBC Driver for Teradata to discover the last entry in the sequence, a DNS
resolution must fail. DNS resolutions which result in a failure might be time consuming,
depending on how the DNS is configured. If a name lookup failure in the DNS is time

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 43

consuming, type the number of DNS-defined cops into the Datasource DNS Entries field. If
additional entries are added to DNS at a later time, they will be discovered by the ODBC
Driver for Teradata (if Data Source DNS Entries is not set or undefined).

For details about how to modify cop handling, see Data Source DNS Entries in Teradata
ODBC Driver Advanced Options.

Session Character Sets and Translation DLLs
The following table indicates SQLDriverToDataSource conversions. The subsequent table
describes SQLDataSourceToDriver conversions. UTF8/UTF16 session character sets do not
require translation DLLs.

Function of SQLDriverToDataSource

Convert Windows application code page to UTF16

The following table describes the functions of the SQLDataSourceToDriver.

Function of SQLDataSourceToDriver

Convert UTF16 to Windows application code page

User-defined session character sets can be used either with or without a translation DLL. If
no translation DLL is specified, the driver's conversion is based on the current application
code page. With Teradata-provided session character sets, no translation DLLs are needed
as long as the session character set matches to the current application code page. For
example, a Chinese session character set matches the Chinese Windows PC.

It is recommended translation DLLs be copied to the same folder and location where the
driver was installed.

Note:

KANJIEBCDIC5038_0I is supported on Windows systems when set up as a Japanese
machine (CP932). Other configurations are not supported. This character set is used
for communications to and from the database. The application must use the Windows
CP932 session character set when communicating with the ODBC driver. This behavior
is identical to KANJIEUC_0U.

Working with DSNs
The following subsections describe how to trace, migrate, and restore DSNs.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 44

DSN Tracing
ODBC Driver for Teradata can provide detailed trace information for DSNs associated with
Teradata Database. This is referred to as DSN tracing, which differs from the higher level
Driver Manager tracing, which is enabled and disabled using the ODBC Data Source
Administrator.

The DSN trace file is a text file with internal information from ODBC Driver for Teradata
about API calls, message transfers, and other driver actions. It is primarily intended for use
by Teradata Technical Support.

Driver level tracing can be performed easily using ODBC Data Source Administrator by
choosing your DSN entry and selecting the Logging Options button.

The Logging Options dialog box appears. Select the desired level of logging and the
destination for the logs. Refer to the section below for more information on logging levels
and steps for how to enable driver logging on Windows.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 45

Note:

Using DSN tracing will significantly degrade performance.

DSN Migration

Note:

DSN migration is no longer done automatically during installation.

Enabling Driver Logging on Windows
1. Open ODBC Data Source Administrator where you created the DSN to access logging

options.

2. Select the DSN and click Configure > Logging Options.

3. From the Log Level drop down list, select the logging level corresponding to the amount
of information you want included in the files.

Logging Level Description

OFF (Default) Disables all logging.

FATAL Logs severe error events that lead the driver to abort.

ERROR Logs error events that might allow the driver to continue running.

WARNING Logs events that might result in an error if no action is taken.

INFO Logs general information describing the progress of the driver.

DEBUG Logs detailed information that is useful for debugging the driver.

TRACE Logs all driver activity.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 46

4. In the Log Path field, specify the full path to the target folder where you want to save
log files.

5. In the Max Number Files field, type the maximum number of log files to keep.
After the maximum number of log files is reached, each time an additional file is created
the driver deletes the oldest log file.

6. In the Max File Size field, type the maximum size of each log file in megabytes (MB).
After maximum file size is reached, the driver creates a new file and continues logging.

7. Restart your ODBC application to verify the settings.
The new Teradata ODBC Driver produces two log files at the location you specify using
the LogPath key, where [DriverName] is the name of the driver:

• A [DriverName]_driver.log file that logs driver activity not specific to a connection.

• A [DriverName]_connection_[Number].log for each connection made to the
database, where [Number] is a number that identifies each log file. This file logs driver
activity specific to the connection.

Disabling Driver Logging on Windows
1. Open the ODBC Data Source Administrator where you created the DSN.

2. Select the DSN and click Configure > Logging Options.

3. From the Log Level drop-down list, select LOG_OFF.

4. Click OK.

5. Restart your ODBC application to verify the new settings.

3: Configuration for Windows

ODBC Driver for Teradata® User Guide, Release 16.20 47

Overview
This section provides instructions for configuring a data source and ODBC Driver for
Teradata on systems running Apple OS X.

For information about the UNIX system versions of ODBC Driver for Teradata, see
Configuration for UNIX/Linux Systems.

For information about the Windows version of ODBC Driver for Teradata, see Configuration
for Windows.

ODBC Driver Is Universal Binary
Teradata ODBC Driver library is a Universal binary containing 32-bit and 64-bit versions.
Depending on application bitness, either 32-bit or 64-bit version of driver will be loaded
appropriately.

ODBC Driver Directories
Pathname Description

/Library/Application Support/teradata/
client/<TTU version>/lib

ODBC Driver libraries

/Library/Application Support/teradata/
client/ODBC/include

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/odbc/include'

/Library/Application Support/teradata/
client/ODBC/lib

symbolic link to '/Library/Application
Support/teradata/client/<TTU
version>/odbc/lib'

/Library/Application Support/teradata/
client/<TTU version>/bin

ODBC Connection test tool

/Library/Application Support/teradata/
client/<TTU version>/include

Teradata ODBC Driver custom
definitions

/Library/Application Support/teradata/
client/<TTU version>/odbc/msg

Teradata ODBC Driver error message
catalog file

Configuration for Apple OS X

4

ODBC Driver for Teradata® User Guide, Release 16.20 48

Pathname Description

/Library/Application Support/teradata/
client/<TTU version>/odbc/samples

Sample ODBC application source code

/Library/Application Support/teradata/
client/ODBC/odbc.ini

Sample odbc.ini file

ODBC Driver Manager
Teradata ODBC driver is supported with iODBC driver manager (version 3.52.8) that is
installed by default on Apple OS X. The Teradata Tools and Utilities install suite will not install
ODBC Driver Manager along with ODBC Driver for Teradata.

odbc.ini File
ODBC DSNs are saved in odbc.ini file. The default locations to save the odbc.ini file are:

User DSNs: "~/Library/ODBC/"

System DSNs: "/Library/ODBC/"

Optionally, the ODBCINI environment variable can point to an odbc.ini file present in non-
default locations.

ODBC DSNs can be configured using the GUI Administrator tool or manually.

Configuring a DSN Using ODBC Administrator Tool
The ODBC Administrator Tool from Apple is available for download at http://
support.apple.com/kb/DL895. This is the ODBC administrator tool recommended by
Teradata. Once you have installed it, follow the following procedure to configure a DSN.

1. In the Finder under Go select Utilities > ODBC Administrator .

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 49

http://support.apple.com/kb/DL895
http://support.apple.com/kb/DL895

2. The User DSN tab shows a list of DSNs saved in ~/Library/ODBC/odbc.ini file. To modify
or remove an existing DSN, select it, and press the respective button. To add a new user
DSN, click Add.

3. In the Choose a Driver dialog, select Teradata Database ODBC Driver 16.20 and click OK.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 50

4. In the ODBC Driver Setup for Teradata Database dialog, fill in the required information
as described in the following table and click OK to save the DSN.

Note:

The OK button does not become available until the Name or IP Address field is
filled in.

Field, Check
Box, or
Button Description

Data Source group box

Name Enter the Data Source Name (DSN) that the application is to refer to
when executing SQLConnect or SQLDriverConnect. The entered DSN
is the name that will appear in the Data Sources dialog box during a
manual connection.

See the “data-source-name=<driver>” option in ODBC Data Sources
Section.

Description [Optional] Enter descriptive text about the data source in this box.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 51

Field, Check
Box, or
Button Description

This is a comment field that is not retrievable by an SQL or ODBC
command.

See the “Description=<data-source-desc>” option in Data Source
Specification Section.

Teradata Server Info

Name or IP
address

Perform one of the following:
• Enter the Teradata Database name (alias or FQDN) without COP

suffix.
• Enter the name or IP address of the LAN-connected node in your

system, one per line.

After providing the name, ODBC Driver for Teradata dynamically
detects all associated COP entries.

You must define COP names or the name without COP suffix in either a
Domain Name Services (DNS) or the local hosts file.

Authentication group box

Mechanism Default = determined by a configuration option set in an XML file by
TeraGSS program, tdgssconfigure.

Specify the desired security checking mechanism. Valid values are:
• TD2 - selects Teradata 2 as the authentication mechanism.

Username and password are required.
• TDNEGO – selects one of the Authentication Mechanisms

automatically based on the policy, without user involvement.
• LDAP - selects Lightweight Directory Access Protocol (LDAP) as

the Authentication Mechanism. The application provides the
username and password.

• KRB5 – selects Kerberos (KRB5) on Windows and Apple OS X
clients working with Windows servers. The application provides the
username and password.

• JWT – selects JSON Web Token (JWT) as the Authentication
Mechanism. An authentication mechanism based on the JWT needs
to be provided in the form of "token=<JWT token>" where <JWT token>
is the actual JWT token.

See complete descriptions at Authentication Mechanisms.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 52

Field, Check
Box, or
Button Description

Parameter Users cannot enter parameters in this field. Instead, click the Change
button located to the right of the field, and a new dialog box opens,
allowing the parameter to be entered.

Once a parameter is entered, the text will be masked with * characters.

Indicate a string of characters to be regarded as a parameter of the
authentication mechanism. The string is opaque to ODBC Driver for
Teradata and is passed to the Teradata authentication software called
to set the mechanism.

Enclose characters [] {} () , ; ? * = ! @ in braces.

You can use a Teradata Wallet reference string instead of a plain text
parameter by specifying the $tdwallet() token. For example:

$tdwallet(WalletRefString)

For more information, see Teradata Wallet.

Username Default = Cleared

Specify a username for the default Teradata Database.

Shows the default username that was specified during the data
source(s) configuration of the driver. The default value can be
overridden here. If required, the user is prompted for additional
information. The username and password are Teradata-specific, not to
be confused with other user ids and passwords.

The username is interpreted in the context of the authentication
mechanism.

If the authentication mechanism allows fully qualified usernames, then
the username can contain a domain or realm; for example,
{judy@linedata}. Values containing a character such as @ must be
enclosed in braces.

SSO is indicated by the absence of a Username and Password.

See the “Username=<name>” option in Data Source Specification
Section.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 53

Field, Check
Box, or
Button Description

Teradata
Wallet String

Enter and save a Teradata Wallet reference string as password for the
user. Do not need to enclose the Teradata Wallet reference string in
$tdwallet() token.

For more information, see Teradata Wallet.

Optional group box

Default
Database

Default = Cleared

Specify a default database.

See the “DefaultDatabase=<database-name>” option in Data Source
Specification Section.

Account
String

Default = Cleared

Enter a user in Teradata Database while configuring the data source
rather than having to provide account information during configuration
of ODBC Driver for Teradata.

This information can be used to help isolate users, to find out what
application the users are running, or to restrict users from logging on.

See the “AccountStr=<account>” option in Teradata DSN Options.

Session
Character
Set

Default = ASCII

Specify the character set for the session. It is strongly recommended to
use the default ASCII session only for 7-bit ASCII characters. UTF8 is
the recommended default session character set for all languages
including US English. To use a different character set than is chosen by
default, specify or select it here.

The options available from the drop-down list are as follows:
• ASCII
• UTF8
• UTF16
• LATIN1252_0A
• LATIN9_0A
• LATIN1_0A
• Shift-JIS (Windows, DOS compatible, KANJISJIS_0S)
• EUC (Unix compatible, KANJIEC_0U)
• IBM Mainframe (KANJIEBCDIC5035_0I)
• KANJI932_1S0

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 54

Field, Check
Box, or
Button Description

• BIG5 (TCHBIG5_1R0)
• GB (SCHGB2312_1T0)
• SCHINESE936_6R0
• TCHINESE950_8R0
• NetworkKorean (HANGULKSC5601_2R4)
• HANGUL949_7R0
• ARABIC1256_6A0
• CYRILLIC1251_2A0
• HEBREW1255_5A0
• LATIN1250_1A0
• LATIN1254_7A0
• LATIN1258_8A0
• THAI874_4A0

Note:

For user-defined session character sets that are not shown on the
above list, type the name of the user-defined session character set.

Buttons

OK Click to enable the driver to use any changes that have been made in
the dialog box. Note that this button does not become available
unless the Name box in the Data Source group box and the Teradata
Server Info Name(s) or IP address(es) group box are filled in.

Cancel Click to cancel any changes made to the dialog box and abort the
current driver and data source selection.

? Click to obtain detailed help about this dialog box.

Options Click to display the Teradata ODBC Driver Options dialog box and
configure additional options and formats.

Related Information:

Teradata ODBC Driver Options
Teradata ODBC Driver Advanced Options

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 55

Teradata ODBC Driver Options
1. Use the Teradata ODBC Driver Options dialog to configure additional options. The

options are listed in the following table.

Field, Check
Box, or
Button Description

Use Column
Names

Default = Selected

Determines whether ODBC Driver for Teradata returns column names
or column titles.

See the “DontUseTitles=[Yes|No]” option in Teradata DSN Options.

Use X Views Default = Cleared

Determines whether the X View is used.

See the “UseXViews=[Yes|No]” option in Teradata DSN Options.

No HELP
DATABASE

Default = Cleared

Determines whether the Help Database is used.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 56

Field, Check
Box, or
Button Description

See the “DontUseHelpDatabase=[Yes|No]” option in Teradata DSN
Options.

Ignore
Search
Patterns

Default = Cleared

Determines whether search pattern characters _ and % are used in
search patterns or are passed as regular characters.

See the “IgnoreODBCSearchPattern=[Yes|No]” option in Teradata
DSN Options.

Enable
Reconnect

Default = Cleared

Causes ODBC Driver for Teradata to determine if sessions on
Teradata are to be reconnected after a system crash or reset is
detected.

See the “EnableReconnect=[Yes|No]” option in Teradata DSN Options.

Disable
Parsing

Default = Cleared

Disables or enables parsing of SQL statements by ODBC Driver for
Teradata. When parsing is enabled, the driver parses SQL statements
and transforms ODBC escape sequences into SQL.
• When selected, ODBC Driver for Teradata does not parse SQL

statements.
• When cleared, SQL statements are parsed.

See the “NoScan=[Yes|No]” option in Teradata DSN Options.

Use Regional
Settings for
Decimal
Symbol

Default = Selected

When selected, ODBC Driver for Teradata uses regional settings to
determine the decimal symbol.

If cleared, ODBC Driver for Teradata uses a “.” character as the decimal
symbol and ignores the regional settings.

Enable Data
Encryption

Default = Cleared

When Enable Data Encryption is checked – the option directs the
ODBC Driver to use Data Encryption, causing ODBC Driver for
Teradata and Teradata Database to communicate with each other in
encrypted manner.

When Enable Data Encryption is cleared–Data Encryption is disabled.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 57

Field, Check
Box, or
Button Description

Enable
Extended
Statement
Information

Default = Selected

Determines whether extended statement information is to be used by
ODBC Driver for Teradata, provided that it is available from Teradata
Database. Database versions from V2R6.2 and up support extended
statement information, including metadata for parameters used in SQL
requests and columns in result sets.

When EnableExtendedStmtInfo is Selected – ODBC Driver for
Teradata requests and uses extended statement information from the
database if supported. If extended statement information is available,
then the ODBC API function SQLDescribeParam is supported and
SQLGetFunctions returns SQL_TRUE (supported) for
SQL_API_SQLDESCRIBEPARAM.

When EnableExtendedStmtInfo is cleared – ODBC Driver for Teradata
does not request or use extended statement information from the
database, even if supported. If extended statement information is
unavailable, SQLDescribeParam is not supported and
SQLGetFunctions returns SQL_FALSE (not supported) for
SQL_API_SQLDESCRIBEPARAM.

Enable Client
Side UDF
Upload

Default=Cleared.

If this is unchecked, the driver will not support UDF source file uploads.

See the "EnableUDFUpload=[Yes|No] option in Teradata DSN Options.

UDF Upload
Path

Fully qualified path where source files will be found. If defined, the driver
looks at this location for files the database requests, unless the
database gives a fully qualified path as part of the file name.

No relative paths using “..” are allowed in this value.

The default value displayed in the field (Please enter the UDF folder
path) MUST be changed to the value you wish to use (either a valid path
or empty). Delete the default value to leave the field empty.

If Enable Extended Statement Information is checked:
• The path you specify in UDF Root Directory will be prepended to all

file names specified with an EXTERNAL NAME clause of a CREATE
FUNCTION or REPLACE function.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 58

Field, Check
Box, or
Button Description

• To use fully qualified file names in EXTERNAL NAME clauses, leave
this field empty.

See "UDFUploadPath=<path>" option in Teradata DSN Options.

Session Mode Specifies the mode (Teradata or ANSI) for sessions on Teradata
Database. The selected mode applies for the duration of the session.

The default value is determined by the database based on the option
used in the Teradata Database CREATE or MODIFY USER statement.

DateTime
Format

Assigns the ANSI formats for DATE, TIME, and TIMESTAMP.

The default setting is AAA. IAA is optional. Because the Integer data
type has been deprecated for the TIME format, it is not recommended.

For information, see Integer Time.

See the “DateTimeFormat=[A|I]AA” option in Teradata DSN Options.

Return
Generated
Keys

Default = No

Determines the result from requests that insert into identity columns
(INSERT, INSERT ... SELECT, UPSERT, MERGE-INTO). These requests
can optionally return a result set containing identity column values
(also known as auto-generated keys) for the inserted rows.

Auto-generated key retrieval is not supported in Teradata Database
versions prior to V2R6.2. The setting of Return Generated Keys has no
effect when using a pre-V2R6.2 database server.

Valid values are No, Identity Column, and Whole Row:
• No = Auto-generated key retrieval is disabled (default)
• Identity Column = Retrieve identity column only
• Whole Row = Retrieve entire row(s)

When Return Generated Keys is set to Identity Column or Whole Row,
a request that inserts into tables containing identity columns returns
two results: a row count with the number of inserted rows and a result
set containing either the auto-generated keys as a single column or
the complete rows inserted. The insert request becomes similar to a
macro that first inserts and then selects the identity column or all
columns of the rows just inserted.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 59

Field, Check
Box, or
Button Description

When Return Generated Keys is set to No, the behavior of requests
that insert into identity columns is not changed.

UPT Mode Default = NOTSET

Enables Unicode Pass Through Mode for the ODBC Application.

The default value is NOTSET, which means that the UPT Mode set by
the database is used; the ODBC Driver for Teradata does not send
anything to the database when this option is set.

UPTON: ODBC Driver for Teradata sends “SET SESSION
CHARACTER SET UNICODE PASS THROUGH ON” to the database
while connecting, thereby enabling UPT MODE for that session.

UPTOFF: ODBC Driver for Teradata sends “SET SESSION
CHARACTER SET UNICODE PASS THROUGH OFF” to the database
while connecting, thereby disabling UPT MODE for that session.

Warning group box

Advanced Click to bring up the Teradata ODBC Driver Advanced Options dialog
box. The dialog box contains further setting options available; however,
it is strongly recommended NOT to change these settings.

Related Information:

Configuring a DSN Using ODBC Administrator Tool
Teradata ODBC Driver Advanced Options

Teradata ODBC Driver Advanced Options
The Teradata ODBC Driver Advanced Options dialog box contains further setting options.

Note:

It is strongly recommended NOT to change the default settings in the Teradata ODBC
Driver Advanced Options dialog.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 60

Field, Check Box, or Button Description

Maximum Response Buffer
Size

Default = 65536 (64K)

Enter the value used to try to limit the Teradata response
buffer size for SQL requests. This value can be adjusted
dynamically if Teradata cannot send a result within the
limited packet size defined.

See the “MaxRespSize=” option in Teradata DSN Options.

Redisplay Reconnect Wait This feature has been deprecated for ODBC Driver for
Teradata 14.10.

TDMST Port Number Default = 1025

Lists the port number to use to access Teradata Database.
Do not change this value unless instructed to do so by
Technical Support.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 61

Field, Check Box, or Button Description

See the “TDMSTPortNumber=<integer>” option in
Teradata DSN Options.

Translation DLL Name Specifies the translation DLL path. Translation DLL is used
to convert between session character set and application
character set.

Translation Option Specifies the translation DLL option. The option is used by
translation DLL.

Login Timeout Default = 20

Defines a value corresponding to the number of seconds to
wait when establishing a virtual circuit with Teradata for
login. Enter an integer value.

See Teradata DSN Options.

ProcedureWithPrintStmt Default = N

Activates the print option when creating stored procedures.

See the “PrintOption=[N | P]” option in Teradata DSN
Options.

ProcedureWithSPLSource Default = Y

Specifies the SPL option when creating stored procedures.

See the “SplOption=[Y | N]” option in Teradata DSN
Options.

Data Source DNS Entries The Data Source DNS Entries DSN option notifies the
ODBC Driver for Teradata how many entries are defined in
DNS for the database name. The initial value of this option
controls how the ODBC Driver for Teradata resolves
database names to IP addresses. If this value is not set, the
default value is undefined (empty). If multiple database
names are provided in ODBC DSN, the Data Source DNS
Entries option is applicable to all names.

Note:

If a database is identified by IP address instead of a name
in the ODBC DSN or connection-string, the Data Source
DNS Entries option is ignored. The database is identified
in the Name(s) or IP address(es) field described in the table
titled ODBC Driver Setup (Apple OS X).

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 62

Field, Check Box, or Button Description

Data Source DNS Entries=undefined (default setting) is
recommended for best results. This setting enables the
ODBC Driver for Teradata to lookup DNS dynamically and
find all available COPs for a given database name. Using
this approach, ODBC Driver for Teradata will automatically
detect new nodes added to the Teradata database (and
DNS) in the future, without ODBC modification.

Data Source DNS Entries= 0 indicates that DNS does not
contain cop entries for the database name. The database
name will only be resolved by itself. No attempt will be made
to resolve using a cop suffix. This behavior can be desirable
in an environment utilizing DNS to load balance. When DNS
is used for load balancing, administrators can configure
DNS to provide a different IP address or multiple IP
addresses in different order each time the database name
is resolved using DNS.

Data Source DNS Entries= value. Entering a non-zero value
indicates that DNS contains cop entries for the database
name and the last cop entry is value. The first connection
attempt will chose a random number between 1 and value.
Each subsequent connection will then increment to the next
number (round-robin). This approach will not encounter
costly DNS resolution failures (how costly depends on how
the DNS is configured). However, if additional entries are
added to DNS at a later time, they will not be discovered by
the ODBC Driver for Teradata unless the supplied value is
increased.

Maximum Single LOB Bytes Default=4000

Enter the value used to set the maximum size of any one
SLOB (CLOB, BLOB) item.

Maximum Total LOB Bytes
Per Row

Default=65536

Enter the value used to set the maximum size of all LOB
bytes per row.

Enable DSN Tracing The Enable DSN Tracing option controls whether DSN
tracing is enabled or disabled.
• Unchecked (default) = disabled
• Checked = enabled

Path: Specifies the absolute path of the trace file.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 63

Field, Check Box, or Button Description

The default is /tmp/ODBC.Trace.xxxxx. If the entry is missing,
a default pathname of /tmp/ODBC.Trace.xxxxx is used,
where xxxxx is the pid of the creating process.

Use TCP_NODELAY Default = Selected

Valid for the Teradata DSN in ODBC Driver for Teradata.

Transmission Control Protocol (TCP) provides an option
called TCP_NODELAY to control the transmission of data.

See the “TCPNoDelay=[Yes | No]” option in Teradata DSN
Options.

Use NULL for Catalog Name Default = Cleared

When this option is selected – NULL values are assumed
for the Catalog Name parameters in any of the Catalog API
functions, even if the application passes a value.

When this option is cleared and a value is passed for the
Catalog Name parameter instead of NULL – ODBC Driver
for Teradata returns an error because catalogs are not
supported by Teradata Database.

Enable Read Ahead Default = Selected

When this option is selected - the ODBC Driver reads ahead
by requesting the next response message from the
database when the current response message being
processed is not the last. The database can have one
request active for each session at any point in time. An
active request is either an SQL request which is executing
or a request for the next part of the result from an earlier
SQL request.

When this option is cleared - the ODBC Driver only requests
the next response message from the database when the
current response message has been processed by the
driver.

Retry system calls (EINTR) Default = Selected

When this option is selected – the ODBC Driver is
responsible for retrying the socket system calls when they
have been interrupted by some event such as a SIGALRM.

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 64

Field, Check Box, or Button Description

When this option is cleared – the ODBC Driver returns an
SQL_ERROR to the ODBC Application. The ODBC
Application is responsible for recovery from the interrupted
socket system calls.

Custom options group box

Use DATE data for
TIMESTAMP parameters

Default = Cleared

When this option is selected– ODBC Driver for Teradata is
directed to send DATE data for parameters bound as
SQL_C_TIMESTAMP and SQL_TIMESTAMP.

This option should not be enabled for applications that are
not using Microsoft Access Jet databases.

This option should only be selected for this circumstance,
as this results in truncation of SQL_C_TIMESTAMP data to
contain only the DATE portion.

Enable Custom Catalog
Mode for 2.x Applications

Default = Cleared

Provides backwards compatibility for ODBC 2.x
applications that have taken advantage of a defect in the
ODBC Driver where the functionality of the Catalog APIs
are noncompliant with the ODBC Programmer's Reference
specification.

The behavior when a NULL value is passed to the
SQLTables API for the SchemaName argument results in a
search for tables belonging to the userid, DBC, and default
database schema names, rather than a % search pattern
as noted in the ODBC Programmer's Reference
specification.

Return Empty string in
CREATE_PARAMS column
for SQL_TIMESTAMP

Default = Cleared

Returns an empty string for the CREATE_PARAMS column
of SQLGetTypeInfo for SQL_TIMESTAMP data type, and
disallows MC-ACCESS from using any TIMESTAMP
precision value in Create Table text.

Return max. CHAR/
VARCHAR length as 32K

Default = Cleared

Returns a value of 32000 (in general, could be 64000
also) for COLUMN_SIZE column of SQLGetTypeInfo for
SQL_CHAR and SQL_VARCHAR data types. This allows

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 65

Field, Check Box, or Button Description

MS-ACCESS to handle column size value returned by
ODBC Driver for Teradata without any numeric overflow.

User DSNs will be saved in the ~/Library/ODBC/odbc.ini file.

System DSNs will be saved in the /Library/ODBC/odbc.ini file.

Note:

To be able to save a DSN, the user need write permission to the respective odbc.ini file.

Related Information:

Configuring a DSN Using ODBC Administrator Tool
Teradata ODBC Driver Options

Configuring a DSN Manually in odbc.ini
For information on configuring a DSN manually, see Configuration of odbc.ini in UNIX/Linux
and Apple OS X.

Verifying Connection to the Teradata Database
Verify that the client system can connect over TCP/IP to the server. Use connection test
program tdxodbc located in /library/application support/Teradata/client/<TTU version>/
bin.

The sample test program can take the ODBC DSN name, database user-id, and password
as input and establish a connection to the database. It can take basic SQL request input
from the user, submit it to the database, and display the results. In addition to verifying
connection to the Teradata database, tdxodbc can also determine whether or not the ODBC
driver has been loaded correctly and report if there are any missing, required libraries.

Use this command to see the usage syntax of the test program:

/library/application support/Teradata/client/<TTU version>/bin/tdxodbc -h

4: Configuration for Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 66

ODBC.INI Structure
This section describes the odbc.ini file. For examples of the various sections in the odbc.ini
file, see odbc.ini File Examples.

ODBC Driver for Teradata maps a logical Data Source Name (DSN) to the necessary
software components and any additional information required for accessing data in a
Teradata Database. The end user chooses the DSN that reflects the type of data or system
it represents. The following table lists the sections that make up the odbc.ini file.

Section Description

ODBC Options [ODBC]

see ODBC Options Section

Specifies the ODBC Driver for Teradata
installation directory and options.

ODBC Data Sources; [ODBC Data
Sources]

see ODBC Data Sources Section

Lists the name of each data source and describes
its associated driver.

Data Source Specification [<data
source>]

see Data Source Specification Section

Provides an entry for each data source listed in
the ODBC Data Sources section, with additional
details about each data source.

Supported Releases

Minimum supported versions:

• iodbc-3.52 to 3.52.12

• unixODBC 2.3.2 to 2.3.4

• DataDirect Driver Manager 7.1.6 to 7.1.6.292

Specifying ODBC Driver Managers on Non-Windows Machines
Set the library path environment variable to verify your machine uses the correct ODBC
driver manager to load the driver.

Configuration of odbc.ini in UNIX/Linux and
Apple OS X

5

ODBC Driver for Teradata® User Guide, Release 16.20 67

macOS

For macOS machines, set the DYLD_LIBRARY_PATH environment variable to include the paths
to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/
local/lib, run the following command to set DYLD_LIBRARY_PATH for the current user
session:

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/usr/local/lib

For information about setting an environment variable permanently, refer to the macOS
shell documentation.

Linux

For Linux machines, set the LD_LIBRARY_PATH environment variable to include the paths to
the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/
lib, run the following command to set LD_LIBRARY_PATH for the current user session:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

For information about setting an environment variable permanently, refer to the Linux shell
documentation.

Troubleshooting

An error message occurs when the name of the library file for the driver manager is different
than the default. To resolve this issue:

1. Confirm the name of the library file used by your driver manager.

2. In a text editor, open the teradata.teradataodbc.ini file. This file is located in
[InstallDir]/lib by default.

3. Add the following line to the end of the file, in which [DMLibFile] is the name of the library
file:

ODBCInstLib=[DMLibFile]

4. Save the teradata.teradataodbc.ini file.

ODBC Options Section
The ODBC Options section [ODBC] of the ini file specifies whether the ODBC driver
manager options, such as tracing, are enabled or not. This format of this section is:

[ODBC]
keyword=value

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 68

On UNIX/Linux, DataDirect ODBC DM finds the location of its supporting libraries and
message files using the path value of the InstallDir keyword under this section. On UNIX/
Linux, for DataDirect ODBC DriverManager, InstallDir is needed at a minimum under the
[ODBC] section.

The following table lists applicable keywords under the [ODBC] section.

Keyword Description

InstallDir=<filepath> Note:

InstallDir is applicable only on UNIX/Linux for DataDirect
DriverManager.

Specifies the installation directory for ODBC Driver for
Teradata.

An example default installation directory is/opt/teradata/
client/ODBC_64.

A common error encountered while running an application is
the inability to load ODBC Driver for Teradata. The cause is
usually the fact that the exact location of ODBC Driver for
Teradata has not been specified in the odbc.inifile.

The odbc.ini file must reference the exact location of ODBC
Driver for Teradata.

Trace=[0] or [1] Enables Driver Manager tracing.
• 0 (default) - disabled
• 1 - enabled

TraceDll=<tracedll
pathname>

Note:

TraceDLL is the keyword for DataDirect DM on UNIX/Linux.
It is not applicable on Apple OS X.

Specifies the path of the trace DLL, which is located in the
Driver Manger library:
• IBM AIX, Linux, and Solaris (default):

<InstallDir>/lib/odbctrac.so

TraceFile=<filepath> Specifies the path of the file where trace information is logged.

TraceAutoStop=[0] or
[1]

Disables tracing when SQLFreehandle for ENV is called.
• 0 (default) - disabled
• 1 - enabled

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 69

ODBC Data Sources Section
Each entry in the ODBC Data Source section [ODBC Data Sources] of the odbc.ini file lists
a DSN and its associated ODBC Driver for Teradata. The following table provides applicable
keywords.

The section format is:

[ODBC Data Sources]
 data-source-name=<driver>

Keyword Description

data-source-
name=<driver>

[Required] The name of ODBC Driver for Teradata in the [ODBC
Data Sources] section of odbc.ini.

Use the following driver file extensions:
• Solaris, Linux, IBM AIX- Use the.so extension.
• Apple OS X - Use the .dylib extension.

You can use this keyword to configure multiple data sources for the
same system so different default databases or keywords can be
associated with each data source.

Data Source Specification Section
Each data source listed in the ODBC Data Sources section [<data-source-name>] of the
odbc.ini file includes its own Data Source Specification section. These sections have the
following format:

[<data-source-name>]
Driver=<driver-path>
Keyword=<attribute>

The lines following the data source name define the required and optional attributes.

The following table contains the available options that can be entered into the Data Source
Specification section.

Keyword/Synonym Description

Driver=<driver-path> [Required] The full path to the ODBC Driver for
Teradata shared objects.
• Solaris, Linux, IBM AIX - <Install_Dir>/teradata/

client/ODBC/lib/tdataodbc_sbu.so

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 70

Keyword/Synonym Description

• Apple OS X - /Library/Application Support/
Teradata/Client/ODBC/lib/tdataodbc_sbu.dylib

Description=<data-source-
desc>

[Optional] Descriptive text about the data source.

DBCName=<IP-addr-or-
alias>

[Required] The IP address or FQDN (fully qualified
domain name) of the Teradata server.

When a name is specified, ODBC Driver for Teradata
automatically detects associated COP entries. For
example, if the name contains a COPx suffix. For more
information, see Cop Discovery.

Username=<name>

Or

UID=<name>

[Optional] The default username for logging onto a
Teradata server system.

Password=<password> [Optional] The password required for the default
Username.

NOTICE
The odbc.ini file has no password security. The
password is retained in unencrypted plain text and
can be viewed by any user with read-access to the
file. Using this feature is not recommended,
because it is deprecated. For more information, see
Deprecated SQL Transformations.

You can use a Teradata Wallet reference string instead
of a plain text password by specifying the $tdwallet()
token. For example:

Password=$tdwallet(WalletRefString)

For more information, see Teradata Wallet.

DefaultDatabase=<database-
name>

Or

Database=<database-name>

[Optional] The default database associated with the
specified data source.

When no value is specified for this field, it is assigned
the value of the user name as entered into the
Username field.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 71

Keyword/Synonym Description

This field entry can be overridden when a new
connection is specified.

All catalog functions are associated with the default
database if a table owner is not specified.

UPTMode Default = NOTSET

Enables Unicode Pass Through Mode for the ODBC
Application.

The default value is NOTSET, which means that the
UPT Mode set by the database is used. The ODBC
Driver for Teradata does not send anything to the
database when this option is set.

UPTON: ODBC Driver for Teradata sends “SET
SESSION CHARACTER SET UNICODE PASS
THROUGH ON” to the database while connecting,
thereby enabling UPT MODE for that session.

UPTOFF: ODBC Driver for Teradata sends “SET
SESSION CHARACTER SET UNICODE PASS
THROUGH OFF” to the database while connecting,
thereby disabling UPT MODE for that session.

ODBC Administration

Modifying the odbc.ini File
The odbc.ini contains the names and descriptions of the data sources available to users.
Edit this file to add, delete, or change ODBC data sources.

Adding a Data Source
When adding or configuring a data source, the odbc.ini file is edited using a text editor.

Each data source listed in the ODBC Data Sources section of the odbc.ini file must have
its own Data Source Specification section. See ODBC Data Sources Section and Data
Source Specification Section.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 72

Note:

The example in this procedure displays the file extension convention for Solaris, Linux,
and IBM AIX (.so). The file extension for Apple OS X is .dylib.

1. Open the odbc.ini file using any text editor.

2. Add an entry for the new data source and its corresponding driver in the [ODBC Data
Sources] section.

For example, enter the following to assign a data source called [financial] and an ODBC
driver called tdataodbc_sbu.so:

financial=tdataodbc_sbu.so

3. Add a descriptive entry for each data source listed in the [ODBC Data Sources] section
to the Data Source Specification section.

For example, to set up a Data Source Specification section called [financial], specify
the location of ODBC Driver for Teradata and add a description of the driver, similar to
the following:

[financial]
Driver=/opt/teradata/client/ODBC_64/lib/tdataodbc_sbu.so
Description=Teradata 5550H running Teradata Database

Setting ODBCINI
The default location of the odbc.ini file is as follows:

Operating System Default Location

UNIX/Linux $HOME/.odbc.ini(dot odbc.ini)

Apple OS X $HOME/Library/ODBC/odbc.ini

The directory (or directories) where ODBC Driver for Teradata is installed, contain a sample
odbc.ini file. This sample contains a basic template of odbc.ini and sample DSN called
testdsn. You can use this sample as a reference, or update and copy it to the default location.

Location of sample odbc.ini:

Operating System Location

UNIX/Linux (32-bit applications) <install dir>/teradata/client/ODBC_32/
odbc.ini

UNIX/Linux (64-bit applications) <install dir>/teradata/client/ODBC_64/
odbc.ini

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 73

Operating System Location

Apple OS X (32-bit and 64-bit applications) /Library/Application Support/Teradata/
Client/ODBC/ odbc.ini

Optionally, ODBCINI environment variable may point to the odbc.ini file present in non-default
location.

For example, to use odbc.ini present in /usr/dev/odbc.ini:

export ODBCINI=/usr/dev/odbc.ini

Teradata DSN Options
The keyword options in the following table can be added to the Data Source Specification
and Default Data Source Specification sections of the odbc.ini file. The options can only be
configured through the odbc.ini file. The following table lists the options that are
configurable in the odbc.ini file.

ODBC Driver for Teradata has established specific application uses for available DSN
settings. For details, see DSN Settings for Third-Party Applications.

Keyword/Synonym Description

AccountStr=<account>

Or

Account=<account>

Specifies the account value to be entered
during database logon. If unspecified, the
database defaults to the account value
specified when the user was created or
modified.

Note:

This option can help isolate users by
determining the applications users are
running or restricting users from logging
on.

CharacterSet=<charset name>

Or

Charset=<charset name>

Specifies the session character set.
Default is ASCII.

Specify the character set for the session. It
is strongly recommended to use the default
ASCII session only for 7-bit ASCII
characters. UTF8 is the recommended
default session character set for all
languages including US English. To use a

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 74

Keyword/Synonym Description

different character set than is chosen by
default, specify or select it here.

The available options:
• ASCII
• UTF8
• UTF16
• LATIN1252_0A
• LATIN9_0A
• LATIN1_0A
• Shift-JIS (Windows, DOS compatible,

KANJISJIS_0S)
• EUC (Unix compatible, KANJIEC_0U)
• IBM Mainframe

(KANJIEBCDIC5035_0I)
• KANJI932_1S0
• BIG5 (TCHBIG5_1R0)
• GB (SCHGB2312_1T0)
• SCHINESE936_6R0
• TCHINESE950_8R0
• NetworkKorean

(HANGULKSC5601_2R4)
• HANGUL949_7R0
• ARABIC1256_6A0
• CYRILLIC1251_2A0
• HEBREW1255_5A0
• LATIN1250_1A0
• LATIN1254_7A0
• LATIN1258_8A0
• THAI874_4A0

Note:

For user-defined session character sets
not shown on the above list, type the name
of the user-defined session character set.

DateTimeFormat=[A|I]AA Specifies the format of DATE, TIME, and
TIMESTAMP data types.
• A - ANSI
• I - Integer

The three-character specification
represents:

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 75

Keyword/Synonym Description

• First character = DATE format
• Second character = TIME format
• Third character = TIMESTAMP format

The recommended settings are either the
AAA (default), or the IAA (optional)
formats. Because the Integer data type
has been deprecated for the TIME format,
it is not recommended. For information, see
Integer Time. The last character that
represents TIMESTAMP is always ANSI.

DataSourceDNSEntries The DataSourceDNSEntries DSN option
notifies the ODBC Driver for Teradata how
many entries are defined in DNS for the
database name. The initial value of this
option controls how the ODBC Driver for
Teradata resolves database names to IP
addresses. If this value is not set, the
default value is undefined (empty). If
multiple database names are provided in
ODBC DSN, the DataSourceDNSEntries
option is applicable to all names.

Note:

If a database is identified by IP address
instead of a name in the ODBC DSN or
connection-string, the
DataSourceDNSEntries option is ignored.

DataSourceDNSEntries=undefined
(default setting) is recommended for best
results. This setting enables the ODBC
Driver for Teradata to lookup DNS
dynamically and find all available COPs for
a given database name. Using this
approach, ODBC Driver for Teradata will
automatically detect new nodes added to
the Teradata database (and DNS) in the
future, without ODBC modification.

DataSourceDNSEntries= 0 indicates that
DNS does not contain cop entries for the
database name. The database name will

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 76

Keyword/Synonym Description

only be resolved by itself. No attempt will be
made to resolve using a cop suffix. This
behavior can be desirable in an
environment utilizing DNS to load balance.
When DNS is used for load balancing,
administrators can configure DNS to
provide a different IP address or multiple IP
addresses in different order each time the
database name is resolved using DNS.

DataSourceDNSEntries= value. Entering a
non-zero value indicates that DNS
contains cop entries for the database name
and the last cop entry is value. The first
connection attempt will chose a random
number between 1 and value. Each
subsequent connection will then increment
to the next number (round-robin). This
approach will not encounter costly DNS
resolution failures (how costly depends on
how the DNS is configured). However, if
additional entries are added to DNS at a
later time, they will not be discovered by the
ODBC Driver for Teradata unless the
supplied value is increased.

DontUseHelpDatabase=[Yes|No]

Or

DontUseHelpDB=<[Yes|No]

Specifies whether the Help Database is
used.
• No (default) - The driver uses the HELP

DATABASE command.
• Yes - SQLTables uses a SELECT

statement instead of the HELP
DATABASE command when no
wildcard characters are used in
SQLTables.

Note:

SQLTables uses dbc.tables or
dbc.tablesx, depending on the UseXViews
setting.

DontUseTitles=[Yes|No] Specifies whether column names or column
titles are returned.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 77

Keyword/Synonym Description

• No - Returns column titles, if they are
defined; otherwise, returns column
names.

• Yes (default) - Returns column names
rather than column titles, as required
by some applications, such as Crystal
Reports.

Column titles for SQLColumns are shown in
the LABEL column.

EnableUDFUpload=[Yes|No] Specifies whether the ODBC driver will
support UDF source file uploads.
• Yes - UDF source files are uploaded.
• No (default) - UDF source files are not

uploaded.

For more information, see ElicitFile in
Teradata® Call-Level Interface Version 2
Reference for Mainframe-Attached
Systems, B035-2417, and Teradata®

Database SQL External Routine
Programming, B035-1147.

EnableExtendedStmtInfo=[Yes|No] Specifies whether extended statement
information is used when it is available from
the database.
• Yes (default) - Extended statement

information is requested and used.
If extended statement information is
available, the ODBC API function
SQLDescribeParam is supported and
SQLGetFunctions returns SQL_TRUE
(supported) for
SQL_API_SQLDESCRIBEPARAM.

• No - Extended statement information
is not used, even if the database
supports it.
If extended statement information is
not available, SQLDescribeParam is
not supported and SQLGetFunctions
returns SQL_FALSE (not supported)
for SQL_API_SQLDESCRIBEPARAM.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 78

Keyword/Synonym Description

Note:

Teradata Database versions V2R6.2 and
up support extended statement
information, which includes additional
metadata for parameters used in SQL
requests and for columns in result sets.

EnableReadAhead=[Yes|No] Specifies whether the ODBC Driver
performs read-ahead to receive the next
response message while the current
message is being processed.
• Yes (default) - the ODBC Driver reads

ahead by requesting the next response
message from the database when the
current response message being
processed is not the last. The database
can have one request active for each
session at any point in time. An active
request is either an SQL request which
is executing or a request for the next
part of the result from an earlier SQL
request.

• No - the ODBC Driver only requests the
next response message from the
database when the current response
message has been processed by the
driver.

IANAAppCodePage=<ODBC application
code page>

The current ODBC application code page
is defined as IANAAppCodePage.

See ODBC Application Code Page Values
(Linux/UNIX and Apple OS X) for a list of
valid ODBC application code page values
and cautionary information.

IgnoreODBCSearchPattern=[Yes|No]

Or

IgnoreSearchPat=<[Yes|No]

Specifies that characters _ and % work like
regular wildcard characters for values
given to table names, schema names, and
so forth when passed to catalog functions,
such as SQLTables.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 79

Keyword/Synonym Description

This option is useful for applications, such
as Microsoft Access, that do not support
search patterns.
• No (default, except for Microsoft

Access) - Characters _ and % are
processed as regular characters.

Note:

This setting causes Microsoft Access
to use the Data Source section of the
odbc.inifile to process search
patterns.

• Yes - Characters _ and % are not
processed. Instead use the following
commands for a normal search pattern:
SQLTables
SQLColumns
SQLTablePrivileges
SQLProcedures
SQLProcedureColumns
SQLGetInfo

Note:

SQL_SEARCH_PATTERN_ESCAPE
returns an empty string.

integer≥0>LoginTimeout=< Defines the number of paused seconds
before a virtual circuit is established with
Teradata Database for login.

Default is 20.

Enter an integer value greater than or
equal to 0.

MaxRespSize=<integer≤16775168> Limits the Teradata response buffer size
for SQL requests.

Default is 65536 (64K). The maximum
integer value is 16775168.

This value can be adjusted dynamically if
Teradata cannot send a result within the
limited packet size defined:

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 80

Keyword/Synonym Description

• If using a slow TCP/IP interface, such
as PPP or SLIP, enter a smaller value.

• If expecting large result sets in a LAN
environment, enter a larger value.

MechanismName=<MechanismName>

Or

Authentication=<MechanismName>

Identifies the authentication mechanism
used for connections to the data source.

Default is determined by a configuration
option that is set by the TeraGSS program
in an XML file called tdgssconfigure.

Valid values are as follows:
• Empty - The same as omitting the

keyword.
• TD2 - Selects Teradata 2 as the

authentication mechanism. Username
and password are required.

• TDNEGO – selects one of the
Authentication Mechanisms
automatically based on the policy
without user involvement.

• LDAP - Selects LDAP as the
authentication mechanism. The
application provides the username and
password.

• KRB5 - Selects Kerberos as the
authentication mechanism. The
application provides the username and
password.

See Network Security for complete
descriptions of authentication
mechanisms.

MechanismKey=<Value>

Or

AuthenticationParameter=<Value>

Value = string

A string of characters regarded as a
parameter to the authentication
mechanism. It is opaque for ODBC Driver
for Teradata and is passed on to the
Teradata authentication software called to
set the mechanism.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 81

Keyword/Synonym Description

NOTICE
The odbc.ini file has no security. The
MechanismKey is retained in
unencrypted plain text and can be
viewed by any user with read-access
to the file.

You can use a Teradata Wallet reference
string instead of a plain text MechanismKey
value by specifying the $tdwallet() token.
For example:

MechanismKey=$tdwallet(RefString)

For more information, see Teradata Wallet.

NoScan=[Yes|No] Enables or disables parsing of SQL
statements by ODBC Driver for Teradata.
When enabled, the driver transforms ODBC
escape sequences to SQL.
• No (default) - SQL statements are

parsed by ODBC Driver for Teradata.
• Yes - SQL statements are sent

unmodified to Teradata Database
without parsing by ODBC Driver for
Teradata.

NOTICE
If the SQL statements contain ODBC-
specific syntax, do not enable this
option. Setting this option while using
ODBC-specific syntax in the SQL
statement results in Teradata
Database reporting errors.

PrintOption=[N |P] Specifies the print option for stored
procedures.

N (default) - Disables the print option when
stored procedures are created.

P - Enables the print option.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 82

Keyword/Synonym Description

retryOnEINTR Controls whether ODBC Driver for
Teradata retries the socket system calls on
an EINTR or returns an SQL_ERROR.

The affected socket system calls are as
follows:
• connect()
• select()
• recv()
• send()

Values are Yes for retries or No for no retries.
Default is Yes.

ReturnGeneratedKeys=<value> Determines the result from requests that
insert data into identity columns (INSERT,
INSERT ... SELECT, UPSERT, MERGE-
INTO). These requests can optionally
return a result set containing identity
column values (also known as auto-
generated keys) for the inserted rows.

Auto-generated key retrieval is not
supported in Teradata Database versions
prior to V2R6.2 and the setting of
ReturnGeneratedKeys has no effect when
using a pre V2R6.2 database server.
• C - Retrieves identity column only.

Returns a row count of inserted rows
and a result set that contains the auto-
generated keys as a single column.

• R - Retrieves entire rows. Returns a row
count of inserted rows and a result set
that contains the auto-generated keys
of all columns of the rows just inserted.

• N (default) or not set - No auto-
generated key retrieval. The behavior
of requests that insert into identify
columns is unchanged.

SessionMode=[Yes|No] Specifies the mode (Teradata or ANSI) for
sessions on Teradata Database. The
selected mode applies for the duration of
the session.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 83

Keyword/Synonym Description

The default value is determined by the
database based on the option used in the
CREATE or MODIFY USER statement.

Note:

An application cannot set SessionMode
programmatically. SessionMode can be
set only while connecting.

SplOption=[Y | N] Specifies the stored procedure language
(SPL) option when creating stored
procedures.
• N - Created without SPL text.
• Y (default) - Created with SPL text.

TCPNoDelay=[Yes|No] Specifies whether Transmission Control
Protocol (TCP) immediately sends small
packets or waits to gather packets into a
single, larger packet.

This option is valid for the Teradata Data
Source Entry.
• Yes (default) - TCP immediately sends

small packets. This option avoids
transmission delays so a larger number
of small packets, including
acknowledgments, can be sent over the
network.

• No - TCP gathers small packets into a
single packet. This option can reduce
network traffic, but it can also delay
packet transmission. Refer to the TCP
documentation for complete
information.

TranslationDLL=<path> Specifies the name of the translation DLL.
It is recommended that you assign a fully
qualified pathname for the translation DLL.

User-defined session character sets can
be used without a value for this option.
Conversion is then based on the current
application code page.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 84

Keyword/Synonym Description

For details, see User-Defined Session
Character Set Support and Translation
DLLs.

TranslationOption=<integer> A 32-bit value with a specific meaning for
a given translation DLL.

For example, it could specify a certain
character set translation.

If unspecified, a zero value is passed as an
option to SQLDriverToDataSource and
SQLDataSourceToDriver of the
Translation DLL.

TDMSTPortNumber=<integer> Specifies the number of the port that
accesses Teradata Database.

Default is 1025.

Note:

Do not change this value unless instructed
to do so by Technical Support.

UDFUploadPath=<path> Specifies the fully qualified path where UDF
source files will be found. If defined, the
driver looks at this location for files the
database requests, unless the database
gives a fully qualified path as part of the file
name (field must be empty).

For more information, see ElicitFile in
Teradata® Call-Level Interface Version 2
Reference for Mainframe-Attached
Systems, B035-2417, and Teradata®

Database SQL External Routine
Programming, B035-1147.

USE2XAPPCUSTOMCATALOGMODE=[Yes|
No]

Or

2XAPPCUSTOMCATALOGMODE=[Yes|No]

Provides backwards compatibility for
ODBC 2.x applications that use a
noncompliant search patterns.

Earlier versions of ODBC Driver for
Teradata allowed users to create search
patterns other than the % search pattern
stated in the ODBC Programmer’s

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 85

Keyword/Synonym Description

Reference specification. On noncompliant
systems, if a NULL value is passed to the
SQLTables API for the SchemaName
argument, the result is a search for tables
by userid, DBC, and default database
schema names, rather than the % search
pattern.
• No (default) - Use the % search

pattern.
• Yes - Allow searches by userid, DBC,

and default database schema names.

UseDataEncryption=[Yes|No]

Or

DataEncryption=[Yes|No]

No (default) - Encrypt only logon
information.
• Enables the Teradata gateway and

ODBC Driver for Teradata to
communicate in an encrypted manner.

• Yes - Enable data encryption.

UseXViews=[Yes|No] Specifies whether X tables are used.

X tables only contain information that
users have permission to access. These
tables are optional for Teradata, so check
to ensure they exist before using the
option.
• Yes -

◦ SQLTables() and SQLProcedures()
use dbc.tablesVX and
dbc.databasesVX.

◦ SQLColumns() and
SQLProcedureColumns() use
dbc.columnsVX instead of
dbc.columnsV.

◦ SqlStatistics() uses
dbc.tablesizeVX.

• No (default) -
◦ SQLTables() and SQLProcedures()

use dbc.tablesV and
dbc.databasesV.

◦ SQLColumns() and
SQLProcedureColumns() use
dbc.columnsV.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 86

Keyword/Synonym Description

SqlStatistics() uses dbc.tablesizeV.

The Linux/UNIX system version of ODBC Driver for Teradata recognizes the following
options when the LANG environment variable contains a value recognized by ODBC Driver
for Teradata for Japanese, Chinese, or Korean locales. These options are not available on
Apple OS X.

ClientKanjiFormat={SJIS|EUC|Big5|Network
Korean| GB}

Note:

Using this feature is not recommended,
because it is deprecated.

Specifies which character set to use for the
user's choice of character set format:
• SJIS
• EUC
• Big5
• Network Korean
• GB

Default is set by the user.

The data returned is translated from the
session character set to the
ClientKanjiFormat for SJIS and EUC only.

For Big5, NetworkKorean, and GB, this
value should match the session character
set.

DSN Tracing Attributes
Enable logging in the driver as described in the section below.

For more information on tracing, refer to New Teradata ODBC Driver Compatibility
Reference.

Important:

Using any of the tracing options will significantly degrade performance.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 87

Configuring Logging Options on a Non-Windows Machine
To help troubleshoot issues, you can enable logging in the driver. Logging is configured
through driver-wide settings in the teradata.teradataodbc.ini file, which apply to all
connections that use the driver.

Note:

Using any of the logging options will significantly degrade performance. Enable logging
only long enough to capture an issue.

1. Open the teradata.teradataodbc.ini configuration file in a text editor.

2. Set the LogLevel setting to one of the following values:

LogLevel Value Description

0 Disables all logging.

1 Logs severe error events that lead the driver to abort.

2 Logs error events that might allow the driver to continue running.

3 Logs events that might result in an error if no action is taken.

4 Logs general information describing the progress of the driver.

5 Logs detailed information useful for debugging the driver.

6 Logs all driver activity.

3. Set the LogPath key to the full path of the target folder where you want to save the files.

4. Set the LogFileCount key to the maximum number of log files to keep.
After the maximum number of log files is reached, the driver deletes the oldest log files
each time an additional file is created.

5. Set the LogFileSize key to the maximum size of each log file in megabytes.
After the maximum file size is reached, the driver creates a new file and continues
logging.

6. Save the teradata.teradataodbc.ini configuration file.

7. Restart your ODBC application to verify the new settings.
The new Teradata ODBC Driver produces two log files at the location you specify
using the LogPath key, where[DriverName] is the name of the driver:

• A [DriverName]_driver.log file that logs driver activity that is not specific to a
connection.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 88

• A [DriverName]_connection_[Number].log for each connection made to the
database, where [Number] is a number that identifies each log file. This file logs driver
activity that is specific to the connection.

Disabling Logging on a Non-Windows Machine
1. Open the teradata.teradataodbc.ini configuration file in a text editor.

2. Set the LogLevel key to 0.

3. Save the teradata.teradataodbc.ini configuration file.

4. Restart your ODBC application to verify the new settings.

5: Configuration of odbc.ini in UNIX/Linux and Apple OS X

ODBC Driver for Teradata® User Guide, Release 16.20 89

Overview
This section provides information needed to use ODBC Driver for Teradata with custom and
off-the-shelf ODBC applications, relative to the published ODBC standard. The following
information is covered.

Section Heading Contents

Software Development Kits SDKs required for developing ODBC applications

ODBC Conformance The level(s) to which ODBC Driver for Teradata
implements the ODBC specification

ODBC SQL Grammar ODBC SQL grammar and core compliance

ODBC Connection Functions and
Dialog

The ODBC Driver for Teradata API defines three
connection functions for establishing a connection
to a database

ANSI SQL 1992 Syntax How ODBC Driver for Teradata supports the entry
level ANSI SQL 1992 syntax

Keywords for SQLDriverConnect()
and SQLBrowseConnect()

Attributes that can be used with
SQLDriverConnect() and SQLBrowseConnect()

ODBC Pattern Escape Character The ODBC pattern escape character

Large Objects Support for Large Objects, including BLOB and
CLOB

User-Defined Functions Support for User-Defined Functions

User-Defined Types and User-
Defined Methods

Support for User-Defined Types and User-Defined
Methods

Parameter Arrays Using parameter arrays to reduce network traffic

Large Decimal and BIGINT Support Support for Large Decimal and BIGINT

64-bit Support Useful references when working in 64-bit

ODBC Application Development

6

ODBC Driver for Teradata® User Guide, Release 16.20 90

Software Development Kits

Windows Application Development
Microsoft Visual Studio 2012 is the recommended compiler to use when developing custom
Windows applications with 32-bit and 64-bit Windows operating systems.

UNIX OS Application Development
For UNIX OS application development, an SDK is provided as part of the UNIX system
versions of ODBC Driver for Teradata. During the installation of the UNIX system versions
of ODBC Driver for Teradata, header and library files for the SDK are installed.

The following table lists compilers for UNIX platforms that ODBC Driver for Teradata
supports. These compilers are recommended for use when developing custom applications.

Operating System Compiler

IBM AIX IBM XL C/C++ Enterprise Edition for AIX, v9.0

Oracle Solaris on SPARC systems Forte Developer 6 update 2 C++ 5.3

Oracle Solaris on AMD Opteron
systems

Oracle Solaris Studio 11 C++ 5.8

Red Hat Linux (32-bit) g++ (GCC) 3.4.6 20060404 (Red Hat 3.4.6-8)

Red Hat Linux (64-bit) g++ (GCC) 3.4.6 20060404 (Red Hat 3.4.6-3)

Apple OS X Application Development
ODBC Application SDK comes with Xcode. Xcode, a suite of software development tools,
can be downloaded from Apple.

UNIX OS Compilation Options
The ODBC include files must be used when developing ODBC applications on the UNIX
systems. These files are located in:

<InstallDir>/include

The inclusion of the ODBC Driver Manager requires some changes to compilation options for
your applications.

As an example, look at:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 91

<InstallDir>/samples/C/Makefile

or

<InstallDir>/samples/C++/Makefile

and corresponding platform.include files for compilation options for each UNIX platform.

If compiling C++ applications on any UNIX platform that uses ODBC Driver for Teradata, use
the following compile time options:

 -DODBCVER=0x0352

If compiling for C applications on an IBM AIX platform, use the following compile time options:

 -DODBCVER=0x0352

 -qlanglvl=EXTended

Apple OS Compilation Options
If compiling ODBC applications on OS X platform that uses ODBC Driver for Teradata, use
the following compile time options:

-mmacosx-version-min=10.7 <- The minimum OS X version on which application can run

-DODBCVER=0x0350 <- ODBC Compliance level

ODBC Conformance
ODBC defines conformance levels for ODBC API and the ODBC SQL grammar. These
conformance levels establish standard sets of functionality for using the ODBC drivers for
Teradata Database. The drivers are compliant with ODBC 3.8 SDK core level 1.

ODBC API
This section lists the ODBC API functions that are supported in this release.

Core Level Functions

All ODBC 3.8 core level functions listed in the following table are supported. Following each
function are any limitations, restrictions, or enhancements that exist in ODBC Driver for
Teradata.

Function Name Purpose

SQLAllocHandle Allocates an environment, connection, statement, or descriptor
handle

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 92

Function Name Purpose

SQLCloseCursor Closes a cursor that had been opened on a statement and
discards the pending results

SQLColAttribute Describes attributes of a column in the result set. Retrieving
bookmark metadata on column 0 is not supported.

By default, SQLDescribeCol and SQLColAttribute return the
column name instead of the Teradata column title. If an application
wants the driver to return the title instead of the actual column
name, then the option UseColumnNames in the ODBC Driver for
Teradata options dialog must be unselected for the DSN used, or
DontUseTitles option in the odbc.ini for the UNIX OS must be No.

Returning the column title instead of the actual column name
might cause problems for certain applications, such as Crystal
Reports, because the applications expect to see the column name
and not the column title returned.

SQLConnect Connects to a specific driver by data source name, user ID, and
password

SQLCopyDesc Copies descriptor information from one descriptor handle to
another

SQLEndTran Requests a commit or rollback operation for all active operations
on all statements associated with a connection depending on
Completion type parameter.

SQLEndTran can also request that a commit or rollback operation
be performed for all connections associated with an environment.

SQLExtendedFetch Fetches the specified rowset of data from the result set and
returns data for all bound columns. The parameters for this API
specify that rowsets can be specified at an absolute or relative
position, or by bookmark.

ODBC Driver for Teradata only supports an orientation of
SQL_FETCH_NEXT, and bookmarks are not supported.

SQLFetchScroll Fetches the specified rowset of data from the result set and
returns data for all bound columns. Though the parameters for this
API are Position and Orientation, the 03.00.00 or higher versions
of the driver support only SQL_FETCH_NEXT, and only read-only
and forward-only cursors are supported.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 93

Function Name Purpose

SQLFetchScroll can be called only while a result set exists–that is,
after a call that creates a result set and before the cursor over
that result set is closed.

If any columns are bound, SQLFetchScroll returns the data in
those columns. If the application has specified a pointer to a row
status array or a buffer in which to return the number of rows
fetched, SQLFetchScroll returns this information as well.

SQLFreeHandle Releases an environment, connection, statement, or descriptor
handle. This replaces SQLFreeEnv, SQLFreeConnect,
SQLFreeStmt.

SQLGetConnectAttr Returns the current setting of a connection attribute

ODBC Driver for Teradata provides driver-specific connection
attributes to retrieve Session character set, logical Host ID, and
Session Number information to the application. ODBC Driver for
Teradata defined attributes provided to support the functionality
include:

SQL_ATTR_TDATA_HOST_ID (13001)–the host-id is returned as
an unsigned integer

SQL_ATTR_TDATA_SESSION_NUMBER (13002)–the session
number is returned as an unsigned integer

SQL_ATTR_TDATA_SESSION_CHARSET (13003)–the session
character set is retrieved as a character string

SQL_ATTR_AGKR (13004)–an integer value that determines the
result requests that insert into identity columns (INSERT,
INSERT ... SELECT, UPSERT, MERGE-INTO).

SQLGetConnectOption with 2.x application or
SQLGetConnectAttr with 3.x application tests whether a
particular connection is active or not. The option accepts the
SQL_ATTR_CONNECTION_DEAD attribute also. This is an
ODBC 3.51 attribute.

SQLGetDescField Returns the current setting or value of a single field of a
descriptor record

SQLGetDescRec Returns the current settings or values of multiple fields of a
descriptor record that describes the name, data type, and storage

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 94

Function Name Purpose

SQLGetDiagField Returns the current value of a field of a diagnostic record
associated with a handle

SQLGetDiagRec Returns the current values of a diagnostic record associated with
a handle, including the SQLSTATE, the native error code, and the
diagnostic message text

SQLGetDiagRec replaced SQLError starting in ODBC 3.x.

SQLError() sometimes returns a SQLSTATE of S1000 (general
error) rather than a more-specific SQLSTATE. NativeError
contains the precise Teradata error code, and the
ErrorMessage contains the Teradata error message. If NativeError
contains -1, the error was detected in ODBC Driver for Teradata.

SQLGetEnvAttr Returns the current setting of an environment attribute

SQLGetStmtAttr Returns the current setting of a statement attribute. A list of
supported attributes is provided in DSN Tracing Attributes.

SQLSetConnectAttr Sets a connection attribute to a specified value.

SQLSetDescField Sets the value of a single field of a descriptor record

SQLSetDescRec Sets the values of multiple fields of a descriptor record that
describes the name, data type, and storage

SQLSetEnvAttr Sets an environment attribute to a specified value

SQLSetStmtAttr Sets a statement attribute to a specified value

SQLSetConnectOption() and SQLSetConnectAttr()
The following table contains the list of attributes for the SQLSetConnectOption or the
SQLSetConnectAttr functions.

Parameter Description

SQL_ACCESS_MODE Supported

SQL_AUTOCOMMIT Supported

SQL_LOGIN_TIMEOUT Supported

SQL_TRANSLATE_DLL Supported

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 95

Parameter Description

SQL_TRANSLATE_OPTION Supported

SQL_TXN_ISOLATION Only supports SQL_TXN_SERIALIZABLE and
SQL_TXN_READ_UNCOMMITTED

SQL_QUIET_MODE Supported

SQL_CURRENT_QUALIFIER Not supported

SQL_PACKET_SIZE Not supported

SQL_ODBC_CURSORS Driver Manager handles

SQL_OPT_TRACE Driver Manager handles

SQL_OPT_TRACEFILE Driver Manager handles

Statement Options Set in SQLSetStmtAttr()
The following table lists the Statement Options in SQLSetStmtAttr().

Statement Support

SQL_QUERY_TIMEOUT Supported

SQL_MAX_ROWS Supported

SQL_MAX_ROWS confines the results returned
to a user-specified limit. This is implemented on
a per SELECT statement basis and as such,
might not reduce the network traffic for multi-
statement requests due to the Teradata
mechanism used for spool control.

In multi-statement requests, network traffic
cannot be avoided since the current result set
must be scrolled through to get to the next.

In single-statement requests or if within the last
statement of a multi-statement request,
canceling the request reduces network traffic.

Reduce network traffic by fetching only the
needed result rows of data. If all of the results
from a single-statement request or from the last

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 96

Statement Support

statement of a multi-statement request are not
needed, calling SQLFreeSTMT(SQL_CLOSE)
discards all pending results.

SQL_NOSCAN Supported

The implementation of SQL_NOSCAN varies
slightly from the ODBC definition. By default,
requests are scanned (parsed) to convert ODBC
SQL syntax to Teradata SQL syntax.

If an application calls
SQLSetStmtOption(hstmt, SQL_NOSCAN,
SQL_NOSCAN_ON), ODBC Driver for Teradata
does not parse SQL requests. The ODBC SDK
mentions that only ODBC escape clauses are
not scanned when SQL_NOSCAN_ON is set.

For custom ODBC applications that generate
only Teradata-specific SQL, set
SQL_NOSCAN_ON to avoid parsing SQL
requests and to improve performance.

SQL_MAX_LENGTH Not supported

SQL_ATTR_ASYNC_ENABLE Supported

SQL_BIND_TYPE Only supports SQL_BIND_BY_COLUMN

SQL_CURSOR_TYPE Only supports
SQL_CURSOR_FORWARD_ONLY

SQL_CONCURRENCY Only supports SQL CONCUR_READ_ONLY

SQL_KEYSET_SIZE Only supports SQL_KEYSET_SIZE=0

SQL_ROWSET_SIZE Only supports SQL_ROWSET_SIZE=1

SQL_SIMULATE_CURSOR Only supports SQL_SC_NON_UNIQUE

SQL_RETRIEVE_DATA Only supports SQL_RD_ON

SQL_USE_BOOKMARKS Not supported

SQL_ATTR_ASYNC_ENABLE Supported

SQL_ATTR_METADATA_ID Supported

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 97

Statement Support

SQL_ATTR_CONNECTION_POOLING Supports SQL_CP_PER_DRIVER,
SQL_CP_ONE_PER_HENV, and SQL_CP_OFF

Extension Level Functions
The following table lists the Extension Level Functions and their purpose.

Note:

Functions from Versions 1.x and 2.x, which are changed in implementation due to new
features or retained for backward compatibility:

Function Name Purpose

SQLBindCol Binds application data buffers to columns in the result set.

SQLBindParameter Binds data buffers to parameter markers in an SQL statement.

SQLBindParameter accepts a null pointer for the parameter
data (rgbValue) when the parameter length (pcbValue) is equal
to SQL_NULL_DATA. The maximum number of parameters
supported by SQLBindParameter is 256.

Stored procedures can contain up to 1024 parameters.
Although Teradata Database stores and supports them, ODBC
Driver for Teradata cannot execute stored procedures
containing more than 256 parameters because of the
SQLBindParameter restriction.

Default parameter (pcbValue= SQL_DEFAULT_PARAM) for
procedures (macros) that rely on resolving the bind at
SQL_DATA_AT_EXEC is not implemented.

Set the ColumnSize argument to SQLBindParameter to one of
the following:
• The size of the largest object expected to be transferred

(This is recommended for improved performance.)
• The size of the object being transferred.

Note:

For Unicode character columns, the largest ColumnSize is
32000 characters.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 98

Function Name Purpose

Note:

If the StrLen_or_IndPtr is NULL and ColumnSize is zero when
binding to SQL character or binary, the driver does not report
HY104 from SQLBindParameter, but truncates the data
bound to the parameter with a warning during execution.

SQLBrowseConnect Finds attributes and attribute values required to connect to a
data source.

SQLCancel Cancels the processing on a statement.

SQLColumnPrivileges Returns a list of columns and associated privileges for one or
more tables. This is a Level 2 feature that has been
incorporated into the Core level driver because it replaces
SQLColumnPrivilege in version 2.x.

Since ANSI defines column-level privileges, ODBC Driver for
Teradata returns the column privileges associated with a table.
When all columns in a table have a particular privilege, ODBC
Driver for Teradata returns the value ALL as the column name.

SQLColumns Returns a list of column names in one or more tables

SQLColumns returns column information for tables and views
with up to 22 columns. SQLColumns requires SELECT privileges
on the table(s) in question.

SQLDataSources Returns information about the available data sources.

SQLDescribeCol Returns the column name, type, column size, decimal digits, and
nullability for a column in the result set. Retrieving bookmark
meta data on column 0 is not supported.

By default, SQLDescribeCol and SQLColAttribute return the
column name instead of the Teradata column title. If an
application wants ODBC Driver for Teradata to return the
column title instead of the actual column name, then the option
Use Column Names in the Teradata ODBC Driver Options
dialog box must not be selected for the DSN used, or set
DontUseTitles = No on the UNIX OS.

Returning the column title instead of the actual column name
can cause problems for certain applications, such as Crystal
Reports, because they expect to get the column name and not
the column title.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 99

Function Name Purpose

SQLDescribeCol and SQLColAttribute return an SQL Type of
SQL_TIME for columns in the result set that are defined as
INTEGER FORMAT 99:99:99 or FLOAT FORMAT 99:99:99.
These columns can be fetched into SQL_C_TIME data or any
form where time data can be converted.

SQLColAttribute returns that a column is a currency type if the
DBC FORMAT for that column contains dollar signs, such as
FORMAT ‘$$$,$$9.99’. This can be useful to help an
application know how to format the result data.

SQLDescribeParam Is supported by ODBC Driver for Teradata when the
EnableExtendedStmtInfo feature is enabled.

SQLDescribeParam returns metadata for a column or
expression corresponding to a parameter marker associated
with a prepared SQL statement. This metadata also is available
in the fields of the Implementation Parameter Description (IPD).
Refer to the ODBC Specification for a detailed description of
SQLDescribeParam.

SQLDisconnect Closes the connection associated with a connection handle.

SQLDriverConnect Connects to a specific driver by connection string or requests
that the Driver Manager and ODBC Driver for Teradata display
connection dialog boxes.

SQLDrivers Returns the list of installed drivers and their attributes.

SQLExecDirect Executes an unprepared statement.

SQLExecute Executes a prepared statement.

SQLFetch Fetches the next rowset of data from the result set and returns
data for all bound columns.

SQLForeignKeys Returns a list of column names that make up foreign keys, if
they exist for a table. This is a Level 2 implementation.

SQLGetCursorname Returns the cursor name associated with a statement.

SQLGetData Returns a part or all of one column of one row of a result set.

SQLGetFunctions Returns information about the ODBC Driver for Teradata API
functions supported.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 100

Function Name Purpose

SQLGetInfo Returns general information about ODBC Driver for Teradata
and the data source associated with a connection.

Note:

When connected to Teradata Database release 14.0 or later,
running a query with SQLGetInfo(SQL_KEYWORDS) returns a
list of keywords from the Teradata Database. This might cause
it to run longer than it did in previous releases.

SQLGetTypeInfo Returns information about the Data Types that the data source
supports. Additionally, returns a value to describe the driver
type.

SQLMoreResults Determines whether there are more result sets available. If so,
SQLMoreResults initializes processing for the next result set.
This is a Level 1 Function.

SQLNativeSql Returns the text of an SQL statement that ODBC Driver for
Teradata translates.

SQLNumParams Returns the number of parameters in an SQL statement.

SQLNumResultCols Returns the number of columns in a result set.

SQLParamData Supplies parameter data used by SQLPutData at statement
execution time.

SQLPrepare Prepares an SQL statement for execution.

SQLPrimaryKeys Returns the column names that make up the primary key for a
table.

SQLProcedureColumns Returns the list of input and output parameters, the driver type,
and the columns that make up the result set for the procedures.

SQLProcedures Returns the list of procedure names stored in a data source.

SQLPutData Sends a part or all of a data value for a parameter.
SQLPutData() cannot handle putting parameter data in parts.

SQLRowCount Returns the number of rows affected by an UPDATE, INSERT,
or DELETE statement.

After an SQLExecute or SQLExecDirect, SQLRowCount can be
called to get the DBC Activity count for any type of SQL
statement, even for SELECT statements.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 101

Function Name Purpose

For portability, applications should not rely on this behavior,
because other ODBC drivers might return -1 rather than the row
count after a SELECT statement.

SQLSetCursorName Associates a cursor name with an active statement

SQLSpecialColumns Returns information about the optimal set of columns that
uniquely identifies a row in a specified table, or the columns that
are automatically updated when any value in the row is updated.

SQLSpecialColumns() works correctly for views only if the view
is on a single table and there is exactly one unique index on the
table.

SQLSpecialColumns() works correctly for tables.

SQLStatistics Returns statistics about a single table and the list of indexes
associated with the table.

SQLStatistics() retrieves information about the indexes on a
table, and supplies cardinality statistics on the indexes, but the
number of pages is estimated for indexes. The number of pages
is returned correctly for the base table (a page is assumed to
be 4096 bytes), but is set to 0 for views.

SQLStatistics() supplies precise cardinality statistics on the
table itself only if SQL_ENSURE is set; otherwise, the cardinality
on the base table is set to the largest cardinality from any index
on the table (usually accurate if there are any unique indexes).

The only way to accurately get the cardinality of a table is for
the driver to perform a SELECT COUNT(*) FROM
table. Consequently, SQL_ENSURE can be quite slow.

When the function SQLStatistics() is called with the parameter
value SQL_ENSURE, it is only accurate for small tables.

For larger tables, SQL_ENSURE could effectively make the
table unusable for extended periods, so the SQL_QUICK
method is used instead, which gives the approximate values for
cardinality and pages that are sufficient for most applications.

In Windows, SQLStatistics() returns index information on a
specified table so you can read or update using a view on the
table. User-defined index names, using ODBC grammar, which
were specified to create the index are returned by

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 102

Function Name Purpose

SQLStatistics() as an index name if the index name is still
defined in the DSN entry in the Registry (IndexName0-9). Using
ODBC-style named indexes is not recommended, because it is
deprecated. For details, see ODBC-Style Named Indexes
(deprecated in 15.00).

The Teradata index names are returned instead if:
• The user did not specify an index name using ODBC

grammar (Teradata SQL grammar was used instead).
• The IndexName entry has been reused in the DSN entry.
• The PC performing SQLStatistics() is not the same PC that

was used when the index name was created.

For example, an index name MyIndex was used to create an
index on table MyTable using ODBC grammar syntax.

Internally, Teradata created the index MyTable001 for the table,
but SQLStatistics() returns MyIndex as the index name instead
of MyTable001 since the DSN entry contains this index name for
MyTable. On all other PCs, MyTable001 is returned as the index
name.

SQLTablePrivileges Returns a list of tables and the privileges associated with each
table. This is a Level 2 feature.

ODBC Driver for Teradata returns the information as a result
set on the specified hstmt.

In the result set description are:

PRIVILEGE: Identifies the table privilege. Can be one of the
following or a data source-specific privilege.

SELECT: The grantee is permitted to retrieve data for one or
more columns of the table.

INSERT: The grantee is permitted to insert new rows containing
data for one or more columns into to the table.

UPDATE: The grantee is permitted to update the data in one or
more columns of the table.

DELETE: The grantee is permitted to delete rows of data from
the table.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 103

Function Name Purpose

REFERENCES: The grantee is permitted to refer to one or more
columns of the table within a constraint (for example, a unique,
referential, or table check constraint). The scope of action
permitted the grantee by a given table privilege is data source-
dependent. For example, the UPDATE privilege might permit the
grantee to update all columns in a table on one data source and
only those columns for which the grantor has the UPDATE
privilege on another data source.

SQLTables Returns the list of table names stored in a data source

SQLTables accepts types VIEW, TABLE, and SYSTEM TABLE
to limit its display. Also, DBC tables and views are returned as
SYSTEM TABLE types for easier processing by ODBC
applications, unless you log in as DBC. If logged in as user DBC,
DBC tables are returned as type TABLE.

'GLOBAL TEMPORARY' or 'TEMPORARY' can be specified as
a table type. ODBC Driver for Teradata is not able to provide
information on volatile tables because information on these is
not kept in the Teradata data dictionary.

SQLTables
The 16.20 database has a new table called a Primary Time Index (PTI) table. For details
about PTI tables, refer to Detailed Feature External Specification for Time Series. The TD
ODBC Driver does not add any additional functionalities to handle this new table type, but
the ODBC API function SQLTables now returns one additional column described in the
following table:

Column Name
Column
Number Data Type Comment

TD_TABLE_FLAVOR 6 varchar Contains “PRIMARY TIME INDEX” for
PTI tables. Null if table is not a PTI
table.

SQLStatistics
The 16.20 database has a new table called a Primary Time Index (PTI) table. For more
information, refer to Detailed Feature External Specification for Time Series. The TD ODBC

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 104

Driver does not add any additional functionalities to handle this new table type, but the
ODBC API function SQLStatistics now returns two additional columns described in the
following table:

Column Name
Column
Number Data Type Comment

TD_TIMEZERO 14 varchar The time zero point associated with the
table. For example, “2015-10-22”. Null if
the table is not a PTI table.

TD_TIMEBUCKET 15 varchar The length of a time bucket. For example,
“HOURS(1)”. Null if the table is not a PTI
table.

SQLTablePrivileges
SQLTablePrivileges listed in the following table return all object-level privileges applicable
to the specified tables or other database objects (macro, stored procedure, view, and so
forth).

Privilege Name Purpose

ALTER EXTERNAL PROCEDURE Alter external procedure

ALTER FUNCTION Alter function

ANY PRIVILEGE All default privileges

ALTER PROCEDURE Alter procedure

CREATE EXTERNAL PROCEDURE Create an external procedure

CREATE FUNCTION Create function

CREATE OWNER PROCEDURE Create owner procedure

CREATE ROLE Create new user role

CRETRIG Create trigger

CHECKPT Checkpoint

CRESPROC Create procedure

DROP FUNCTION Drop function

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 105

Privilege Name Purpose

DROPTBL Drop table

DROPTRIG Drop trigger

DROPSPROC Drop Procedure

DROPDB Drop database/user

DROPMAC Drop macro

DROPVW Drop view

EXECUTE FUNCTION Execute function

EXSPROC Execute procedure

OVERRIDE INSERT POLICY FOR
CONSTRAINT

Override insert policy for constraint

OVERRIDE UPDATE POLICY FOR
CONSTRAINT

Override update policy for constraint

OVERRIDE DELETE POLICY FOR
CONSTRAINT

Override delete policy for constraint

OVERRIDE SELECT POLICY FOR
CONSTRAINT

Override select policy for constraint

OVERRIDE DUMP OBJECT Override dump for object

OVERRIDE RESTORE OBJECT Override restore for object

REPOVRRIDE Replication Override

SHOW Access column data

STATISTICS Make table statistics

unknown New privilege to Teradata Database

and SELECT, INSERT, UPDATE, DELETE, GRANT, DUMP, EXECUTE, RESTORE,
REFERENCES, and INDEX.

Unsupported Functions

The functions listed in the following table are not supported at this time.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 106

Function Name Description

SQLSetPos Not supported

SQLSetScrollOptions Not supported

Attributes
The following table lists the environment attributes that are supported in ODBC Driver for
Teradata.

Environment Attribute Values Supported
Values Not
Supported

SQL_ATTR_CONNECTION_POOLING SQL_CP_ONE_PER_DRIVER

SQL_CP_ONE_PER_HENV

–

SQL_ATTR_ODBC_VERSION SQL_OV_ODBC2

SQL_OV_ODBC3

–

The following table lists the connection attributes that are supported in ODBC Driver for
Teradata.

Connection Attribute Values Supported Values Not Supported

SQL_ATTR_ACCESS_MODE SQL_MODE_READ_ONLY

SQL_MODE_READ_WRITE

–

SQL_ATTR_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF

SQL_ASYNC_ENABLE_ON

–

SQL_ATTR_AUTOCOMMIT SQL_AUTOCOMMIT_OFF

SQL_AUTOCOMMIT_ON

In Teradata, a DDL statement
can be entered either as a single
statement or as the last
statement in a transaction.

Catalog and information
functions, such as SQLGetInfoand
SQLGetTypeInfo, might issue SQL
requests when called. To prevent
an error returning from the
database, DDL requests in
manual-commit mode must be

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 107

Connection Attribute Values Supported Values Not Supported

closed with SQLEndTran(); before
calling these functions.

SQL_ATTR_AUTO_IPD SQL_TRUE

SQL_FALSE

This is a read-only attribute set
based on the database support
of extended statement info.

SQL_ATTR_LOGIN_TIMEOUT An integer value –

SQL_ATTR_METADATA_ID SQL_FALSE
SQL_TRUE

–

SQL_ATTR_QUIET_MODE A 32-bit window handle –

SQL_ATTR_TRANSLATE_LIB A character string value –

SQL_ATTR_TRANSLATE_OPTION A 32-bit integer value –

SQL_ATTR_TXN_ISOLATION SQL_TXN_READ_UNCOMMITTED

SQL_TXN_SERIALIZABLE

SQL_TXN_READ_COMMITED

SQL_TXN_REPEATABLE_READ

In addition to the connection attributes given in the previous table, applications can use the
following connection attributes supported by the Driver Manager:

• SQL_ATTR_ODBC_CURSORS

• SQL_ATTR_TRACE

• SQL_ATTR_TRACEFILE

The following table lists the statement attributes that are supported in ODBC Driver for
Teradata.

Statement Attribute Values Supported Values Not Supported

SQL_ATTR_APP_PARAM_DESC A Descriptor Handle –

SQL_ATTR_APP_ROW_DESC A Descriptor Handle –

SQL_ATTR_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF

SQL_ASYNC_ENABLE_ON

–

SQL_ATTR_CONCURRENCY SQL_CONCUR_READ_ONLY SQL_CONCUR_LOCK
SQL_CONCUR_ROWVER
SQL_CONCUR_VALUES

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 108

Statement Attribute Values Supported Values Not Supported

SQL_ATTR_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY SQL_CURSOR_STATIC
SQL_CURSOR_KEYSET_DRIVEN
SQL_CURSOR_DYNAMIC

SQL_ATTR_ENABLE_AUTO_IPD SQL_TRUE

SQL_FALSE

–

SQL_ATTR_IMP_PARAM_DESC A Descriptor Handle –

SQL_ATTR_IMP_ROW_DESC A Descriptor Handle –

SQL_ATTR_KEYSET_SIZE Zero Other than zero

SQL_ATTR_MAX_LENGTH Zero Other than zero

SQL_ATTR_MAX_ROWS An integer value –

SQL_ATTR_METADATA_ID SQL_FALSE

SQL_TRUE

–

SQL_ATTR_NOSCAN SQL_NOSCAN_OFF

SQL_NOSCAN_ON

–

SQL_ATTR_PARAM_BIND_OFFSET_PTR A pointer to an integer value –

SQL_ATTR_PARAM_BIND_TYPE SQL_PARAM_BIND_BY_COLUMN
or an integer value specifying the
row size (for row-wise binding)

–

SQL_ATTR_PARAM_OPERATION_PTR An array, in which the status values
are stored or NULL

–

SQL_ATTR_PARAM_STATUS_PTR An array, in which the status values
are stored or NULL

–

SQL_ATTR_PARAMS_PROCESSED_PTR A pointer to an integer value or
NULL

–

SQL_ATTR_PARAMSET_SIZE An integer value –

SQL_ATTR_QUERY_TIMEOUT An integer value –

SQL_ATTR_RETRIEVE_DATA SQL_RD_ON SQL_RD_OFF

SQL_ATTR_ROW_ARRAY_SIZE An integer value –

SQL_ATTR_ROW_BIND_OFFSET_PTR A pointer to an integer value –

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 109

Statement Attribute Values Supported Values Not Supported

SQL_ATTR_ROW_BIND_TYPE SQL_BIND_BY_COLUMN or an
integer value specifying the row
size (for row-wise binding)

–

SQL_ATTR_ROW_NUMBER An integer value –

SQL_ATTR_ROW_STATUS_PTR An array, in which the status values
are stored or NULL

–

SQL_ATTR_ROWS_FETCHED_PTR A pointer to an integer value or
NULL

–

SQL_ATTR_SIMULATE_CURSOR SQL_SC_NON_UNIQUE SQL_SC_TRY_UNIQUE

SQL_SC_UNIQUE

SQL_ATTR_TRUSTED_SQL SQLULEN value of either
SQL_TRUE or SQL_FALSE

–

SQL_ATTR_USE_BOOKMARKS SQL_UB_OFF SQL_UB_VARIABLE

SQL_UB_FIXED

Supported Descriptor Fields
The descriptor fields consist of header fields and record fields. The list of supported
descriptor fields is provided in the following tables. It is important to understand that
descriptors are new to ODBC 3.x and that there are no restrictions on the values for the
supported descriptor fields.

The following table lists Header Fields.

Header Field

SQL_DESC_ALLOC_TYPE

SQL_DESC_ARRAY_SIZE

SQL_DESC_ARRAY_STATUS_PTR

SQL_DESC_BIND_OFFSET_PTR

SQL_DESC_BIND_TYPE

SQL_DESC_COUNT

SQL_DESC_ROWS_PROCESSED_PTR

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 110

The following table lists Record Fields.

Record Field

SQL_DESC_AUTO_UNIQUE_VALUE

SQL_DESC_BASE_COLUMN_NAME

SQL_DESC_BASE_TABLE_NAME

SQL_DESC_CASE_SENSITIVE

SQL_DESC_CONCISE_TYPE

SQL_DESC_DATA_PTR

SQL_DESC_DATETIME_INTERVAL_CODE

SQL_DESC_DATETIME_INTERVAL_PRECISION

SQL_DESC_DISPLAY_SIZE

SQL_DESC_FIXED_PREC_SCALE

SQL_DESC_INDICATOR_PTR

SQL_DESC_LENGTH

SQL_DESC_LITERAL_PREFIX

SQL_DESC_LITERAL_SUFFIX

SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_NAME

SQL_DESC_NULLABLE

SQL_DESC_OCTET_LENGTH

SQL_DESC_OCTET_LENGTH_PTR

SQL_DESC_PARAMETER_TYPE

SQL_DESC_PRECISION

SQL_DESC_ROWVER

SQL_DESC_SCALE

SQL_DESC_SEARCHABLE

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 111

Record Field

SQL_DESC_TYPE

SQL_DESC_TYPE_NAME

SQL_DESC_UNNAMED

SQL_DESC_UNSIGNED

SQL_DESC_UPDATABLE

ODBC SQL Grammar

Core Compliance
The following table lists the following core-compliant grammar:

• Data Definition Language (DDL)

• Data Manipulation Language (DML)

• Set Functions

DDL DML Set Functions

CREATE TABLE SELECT AVG

DROP TABLE INSERT MIN

ALTER TABLE UPDATE MAX

CREATE INDEX DELETE COUNT

DROP INDEX CALL SUM

CREATE VIEW UPSERT

DROP VIEW

CREATE PROCEDURE

DROP PROCEDURE

REPLACE PROCEDURE

GRANT

REVOKE

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 112

Subqueries
The following table lists the supported SQL grammar extensions:

Extensions

String Functions

Numeric Data Type Conversions

Time/Date Procedures (Stored and Macros)

System Scalar

ODBC Escape Clauses
The following table lists both standard and extended escape forms of ODBC escape
clauses:

Escape Clauses

date literals macro calls

time literals date parameters

timestamp literals

CREATE and DROP INDEX
CREATE INDEX is supported in ODBC syntax as well as in Teradata syntax. DROP INDEX
is supported in Teradata syntax as well as ODBC syntax for locally created index names.
For example, it is possible to drop an index using the index name in which it was created,
provided you are working on the same client system where it was created. However, you
cannot drop an index using the Teradata internal named index convention (for example,
TableName004).

Using this feature is not recommended, because it is deprecated. For details, see“ODBC-
Style Named Indexes (deprecated in 15.00)”.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 113

ODBC Named Indexes

Note:

Using this feature is not recommended, because it is deprecated.

ODBC index-name grammar is supported on a per workstation basis for the following:

CREATE INDEX
DROP INDEX
DROP TABLE
SQLStatistics()

For example,

CREATE INDEX myindex ON mytable (column1, column2)

ODBC grammar ASC and DESC column-identifier clauses for CREATE INDEX are ignored
since Teradata does not support this type of indexing. It is possible to DROP an index using
the index-name which was specified when it was created, provided you are working on the
same PC and the IndexName entry in the Registry file has not been reused.

The specified index-name need not exist on the PC; it is not relevant to Teradata because
an index is created for the specified table using the standard index grammar.

For example,

CREATE INDEX (columnname(s)) ON tablename

If the named index has been deleted from the Registry, or if a user is on a different PC, the
index needs to be DROPped using the Teradata grammar by specifying the tablename and
columns that make up the index. For example,

DROP INDEX (columnname(s)) ON tablename

You cannot DROP a Teradata named index (for example, TableName004).

Scalar Functions
The Teradata Database supports a number of ODBC scalar functions, with additional
scalar functions being added incrementally in new database releases. Refer to the Teradata
Database Functions, Operators, Expressions and Predicates User Guide (B035-1445) for
the list of the currently supported scalar functions by the Teradata Database.

When a client queries a scalar function using a function escape sequence (using the ‘{fn
scalar-function}’ syntax, for example, ‘SELECT {fn MOD(x, y) }’), the ODBC Driver will
determine whether the connected database supports the scalar function. If so, the ODBC
Driver will send the query directly to the database (e.g., “SELECT MOD(x, y)”); if not, the driver
will transform the user query to a query that the connected database supports (e.g.,
“SELECT((x) MOD (y))”).

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 114

A client may send a scalar function query without the function escape sequence, for
example, “SELECT MOD(x, y)”. In this case, the ODBC Driver will send the client query to the
database as is without performing any kind of checks or transformation. This query will
succeed if the connected database supports the scalar function, it will fail otherwise. (For
the MOD function, it is supported by the 16.20 Feature Update 1 Database, but not the
15.10 Database, for example.)

The following table details a few examples exhibiting the above described behavior.

Statement Text
SQL Generated by the ODBC Driver
(i.e., SQLNativeSql)

Teradata
Database
16.20
Feature
Update 1

Teradata
Database
15.10

SELECT {fn
BIT_LENGTH('Teradata')}

SELECT(Octet_Length('Teradata')*8) Succeeds Succeeds

SELECT
BIT_LENGTH('Teradata')

SELECT BIT_LENGTH('Teradata') Succeeds Fails

SELECT {fn
DAYOFYEAR('2018-02-24') }

SELECT (((('2018-02-24')(DATE))-
(((('2018-02-24')(DATE))/
10000*10000+0101(DATE)))) +
1(TITLE 'DayOfYear()'))

Succeeds Succeeds

SELECT
DAYOFYEAR('2018-02-24')

SELECT DAYOFYEAR('2018-02-24') Fails Fails

The following functions were updated in the Teradata Database to support the ODBC
Driver-accepted syntax.

Function Call Change
Teradata Database Version
Implemented

CURRENT_DATE() Can be called with or without
parenthesis.

16.20 Feature Update 1

LENGTH(s) Can also support numeric
expressions.

16.20 Feature Update 1

LTRIM(s) Can also operate on numeric
expressions.

16.20 Feature Update 1

RTRIM(s) Can also operate on numeric
expressions.

16.20 Feature Update 1

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 115

Function Call Change
Teradata Database Version
Implemented

SUBSTRING(s,n1[,n2]) New syntax in Teradata mode 16.20 Feature Update 1

The following functions are now supported in Teradata Database version 16.20 Feature
Update 1.

Function Call Purpose

BIT_LENGTH(s) Returns the length in bits of the specified string.

CONCAT(s1,s2[,...sn]) Concatenates two or more parameter values into a single string.

CURDATE() Returns the current date.

CURTIME() Returns the current local time.

DAYOFMONTH(e) Returns the number of days from the beginning of the month to
the specified date.

DAYOFWEEK(e) Returns the day of the week on which the specific date falls.

HOUR(e) Returns the hour field of the specified time expression.

LOCATE(s1,s2[,p]) Returns the position in s2 where the substring s1 starts.

MINUTE(e) Returns the minute field of the specified time expression.

MOD(x1, x2) Returns the remainder from a division.

MONTH(e) Returns the number of months from the beginning of the year to
the specified date.

NOW() Returns the current date and time.

SECOND(e) Returns the second field of the specified time expression.

UCASE(s) Returns an equal string, which all lowercase characters convert to
uppercase.

WEEK(e) Returns the number of weeks from the beginning of the year to the
specified date.

YEAR(e) Returns the year of the specified date.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 116

ANSI SQL 1992 Syntax
This section describes how the entry level ANSI SQL 1992 syntax is supported by ODBC
Driver for Teradata, including DATE and TIME literals and the functions listed.

Syntax Notes

EXTRACT() None

TRIM() Remove only spaces and 0s

The ANSI syntax for TRIM is very different from ODBC syntax for
Teradata syntax.

Migration:

The TRIM function works differently in Teradata and ANSI modes. In
Teradata mode, TRIM only removes trailing blanks. In ANSI, TRIM removes
leading as well as trailing blanks.

SUBSTRING() The ANSI syntax for SUBSTRING is very different from ODBC syntax for
Teradata syntax

CAST() None

ANSI SQL with No Equivalent Teradata Simulation
ANSI SQL abilities that have no equivalent in Teradata Database are not simulated. Use of
these features will cause errors. Examples are as follows:

• UPDATE and DELETE where CURRENT OF cursor (cursor library can be used to
provide this functionality)

• Outer join extensions to SQL

• Cursor scrolling is limited to the forward direction only

Interval Values
Both TIMESTAMPADD() and TIMESTAMPDIFF() support the interval values listed in the
following table.

Interval Values

SQL_TSI_FRAC_SECOND SQL_TSI_DAY

SQL_TSI_SECOND SQL_TSI_MONTH

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 117

Interval Values

SQL_TSI_MINUTE SQL_TSI_YEAR

SQL_TSI_HOUR

Data Types for ANSI Compliance
The NUMERIC, REAL, and DOUBLE PRECISION data types are actually synonyms for
existing Teradata data types: NUMERIC is mapped to DECIMAL, REAL and DOUBLE
PRECISION are mapped to FLOAT. As a result, Teradata does not return column type
values of NUMERIC, REAL, or DOUBLE PRECISION. Instead, it returns DECIMAL, FLOAT,
and FLOAT respectively. SQLGetTypeInfo (SQL_ALL_TYPES) does not return these new
ANSI types.

Note:

Refer to Teradata Database documentation for a complete description of ANSI
features and migration issues.

ODBC Driver for Teradata supports the standard Teradata data types, in addition to the
ODBC data types listed in the following table:

ANSI Data Types

TINYINT INTERVAL_YEAR

NUMERIC INTERVAL_MONTH

REAL INTERVAL_DAY

DOUBLE PRECISION INTERVAL_HOUR

BIT INTERVAL_MINUTE

BINARY INTERVAL_SECOND

VARBINARY INTERVAL_HOUR_TO_MINUTE

TIME INTERVAL_DAY_TO_SECOND

TIMESTAMP INTERVAL_HOUR_TO_MINUTE

DATE INTERVAL_HOUR_TO_SECOND

INTERVAL INTERVAL_MINUTE_TO_SECOND

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 118

The tables that follow list data type changes occurring between ODBC 2.x and ODBC 3.x.
These changes affect the data type names only. Their functionality remains as before.

The following table lists SQL Data Type name changes.

ODBC 2.5 ODBC 3.51

SQL_DATE SQL_TYPE_DATE

SQL_TIME SQL_TYPE_TIME

SQL_TIMESTAMP SQL_TYPE_TIMESTAMP

The following table lists SQL C-Type identifier changes.

ODBC 2.5 ODBC 3.51

SQL_C_DATE SQL_C_TYPE_DATE

SQL_C_TIME SQL_C_TYPE_TIME

SQL_C_TIMESTAMP SQL_C_TYPE_TIMESTAMP

The DATE data types automatically get a default format of YYYY-MM-DD to match the ODBC
and ANSI specs. The following table lists columns renamed for ODBC 3.x.

Note:

Columns names won't change. The following columns have been renamed for ODBC 3.x.
The column name changes do not affect backward compatibility, because applications
bind by column number.

ODBC 2.0 column ODBC 3.x column

TABLE_QUALIFIER TABLE_CAT

TABLE_OWNER TABLE_SCHEM

PRECISION COLUMN_SIZE

LENGTH BUFFER_LENGTH

SCALE DECIMAL_DIGITS

RADIX NUM_PREC_RADIX

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 119

The following table lists the columns added to the result set returned by SQLColumns in
ODBC driver:

Columns Added

CHAR_OCTET_LENGTH ORDINAL_POSITION

COLUMN_DEF SQL_DATA_TYPE

IS_NULLABLE SQL_DATETIME_SUB

ODBC Connection Functions and Dialog
The ODBC Driver for Teradata API defines three connection functions for establishing a
connection to a database.

• SQLConnect()

• SQLDriverConnect()

• SQLBrowseConnect()

SQLConnect
SQLConnect assumes that a data source name, username, and password are sufficient to
connect to a data source and that all other connection information can be stored on the
system. This information is stored in the DSN Settings file in the registry on Windows in the
user's odbc.ini file.

Syntax:

SQLRETURN SQLConnect(
SQLHDBC ConnectionHandle,
SQLCHAR * ServerName,
SQLSMALLINT NameLength1,
SQLCHAR * UserName,
SQLSMALLINT NameLength2,
SQLCHAR * Authentication,
SQLSMALLINT NameLength3);

SQLConnect establishes a connection to a driver and a data source. The connection handle
references storage of all information about the connection to the data source, including
status, transaction state, and error information.

SQLConnect is the simplest connection function. It requires a ServerName (data source
name) and accepts an optional UserName and Authentication (typically a password). The
UserName and Authentication parameters are passed unmodified to the driver.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 120

SQLConnect works well for applications that hard-code a data source name and do not
require a UserName or Authentication.

It also works well for applications that want to control their own look and feel or that have
no user interface. Such applications can build a list of data sources using SQLDataSources,
prompt the user for data source, UserName, and Authentication, and then call SQLConnect.

SQLConnect establishes an authenticated connection using the authentication mechanism
selected. SQLConnect returns SQL_ERROR and a new error message if no authentication
mechanism can be selected.

If TeraSSO allows fully qualified usernames then the username might contain a domain or
realm, for example: george@linedata.

Teradata Database Connect
If the username and password boxes are filled, the ODBC driver converts them to a
simplified logon format which is passed to TeraGSS as mech data.

Teradata Database Connect Set Up

Field, Check
Box, or
Button Description

DBC Name
or Address

Specify the COP or AMP for your first connection. This is the list of names
and IP addresses that was configured in the Teradata Server Info group
box of the OBDC Driver Setup for Teradata Database dialog box.

Authentication group box

Parameter Type in the parameters required for the desired security checking
mechanism.

With simplified login support, it is not necessary to fill in the Parameter
field for most logins. Sometimes it might be necessary to supply additional
information such as Profile=MyProfile to log on to the database. In such
cases, the additional information is contained in the Parameter field. The
Parameter value can be specified when the DSN is created. Like a
password, the value will be masked.

To change the value of an existing parameter or to enter a new value, click
on the Change button next to the Parameter field. A new Parameter
dialog box opens, which allows the specification of a new Parameter value.
If a Parameter value already exists, it will be displayed in clear text in the
dialog box and can be edited or replaced. When changes are complete,
click OK.

Username Default = Cleared

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 121

Field, Check
Box, or
Button Description

Shows the default username that was specified during the data source(s)
configuration of the driver. The default value can be overridden here. If
required, the user is prompted for additional information.

If the Username field is filled in, the ODBC Driver converts it to a simplified
logon format which is passed to the Teradata security library (TeraGSS).

Password Sends the password (if any) that was configured for this data source
(unless a different password is supplied). If required, the user is prompted
for additional information.

If the Password field is filled in, the ODBC Driver converts it to a simplified
logon format which is passed to the Teradata security library (TeraGSS).

Optional group box

Default
Database

Indicate the default data space that has been allocated to the user (when
supplied). If provided, the user does not have to supply the fully qualified
table name with each request.

If not supplied, the Teradata system automatically assigns the user to the
default data space, which might not have the desired permissions and
tables.

Account
String

Identifies the user (if the Teradata system has account information being
gathered).

Buttons

Change To change the value of an existing parameter or to enter a new value, click
on the Change button next to the Parameter field. A new Parameter
dialog box opens, which allows the specification of a new Parameter value.
If a Parameter value already exists, it will be displayed in clear text in the
Parameter dialog box and can be edited or replaced. When changes are
made, click OK.

OK Click to enable the driver to use any changes that have been made in the
dialog box. Changes are temporary and are not stored, with the exception
of the username, which is stored as the last user that connected to the
data source.

Cancel Click to cancel any changes made to the dialog box and abort the current
driver and data source selection.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 122

Field, Check
Box, or
Button Description

Help? Click to obtain detailed help about this dialog box.

SQLDriverConnect
SQLDriverConnect allows the ODBC driver to define an arbitrary amount of connection
information in the form of keyword-value pairs in the connection string. For example, a
custom program that always uses the XYZ Corp data source might prompt the user for
names and passwords and build the following set of keyword-value pairs, or connection
string, to pass to SQLDriverConnect:

DSN=XYZ Corp;UID=Gomez;PWD=Sesame;

The SQLDriverConnect function is allowed to prompt the user for required logon information
unless called with the SQL_DRIVER_NOPROMPT option.

Sometimes it might be necessary to supply additional information such as
Profile=MyProfile to log on to the database. In this case, the additional information is
contained in the Parameter field. The Parameter value was specified when the DSN was
created. Like a password, the value will be masked.

The following example illustrates this.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 123

To change the value of an existing parameter or to enter a new value, the user clicks on the
Change button, which is located on the Teradata Database Connect dialog box next to the
Parameter field. A new Parameter dialog box displays, allowing the user to specify a new
Parameter value. If a value already exists, it will be displayed in clear text and the user can
edit or replace it. When changes are made, click the OK button.

The following example illustrates this.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 124

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 125

Syntax

SQLRETURN SQLDriverConnect(
 SQLHDBC ConnectionHandle,
 SQLHWND WindowHandle,
 SQLCHAR * InConnectionString,
 SQLSMALLINT StringLength1,
 SQLCHAR * OutConnectionString,
 SQLSMALLINT BufferLength,
 SQLSMALLINT * StringLength2Ptr,
 SQLUSMALLINT DriverCompletion);

SQLDriverConnect supports data sources that require more connection information than
the three arguments in SQLConnect, dialog boxes to prompt the user for all connection
information, and data sources that are not defined in the system information.

After a connection is established, SQLDriverConnect returns the completed connection
string. The application can use this string for subsequent connection requests.

See the connection string keywords and Connection dialog.

SQLDriverConnect returns SQL_ERROR and an error message if no authentication
mechanism can be selected.

Simplified Logon Without a Connection Dialog Box

The preceding dialog boxes might not be displayed if the ODBC Driver has sufficient
information to attempt logging on to the database. The behavior is controlled by
arguments supplied to SQLDriverConnect.

Configuring a DSN

The DSN Setup dialog box is similar to the Teradata Database Connect dialog box, and
works in a similar fashion.

Simplified Logons with the Default Mechanism

Simplified logons will not work when the default mechanism is anything other than TD2
and the Mechanism text box is blank.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 126

SQLBrowseConnect
SQLBrowseConnect is similar to SQLDriverConnect, but allows the caller to provide the
connection information in iterations. SQLBrowseConnect does not allow the driver to
prompt for additional logon information. Instead, the driver returns a string indicating what
information is required and what information might be optionally specified.

If, for example, the user specifies:

DRIVER=Teradata

then the ODBC driver might return the following string:

"DBCNAME:Teradata System=?;UID:Teradata User Id=?;PWD:Teradata
Password=?;*USEINTEGRATEDSECURITY:Enable SSO =
?;*DATABASE:DefaultDatabase=?;*ACCOUNT:Account=?;"

where the * indicates an optional field, and the “?” indicates a missing value.

Syntax

SQLRETURN SQLBrowseConnect(
 SQLHDBC ConnectionHandle,
 SQLCHAR * InConnectionString,
 SQLSMALLINT StringLength1,
 SQLCHAR * OutConnectionString,
 SQLSMALLINT BufferLength,
 SQLSMALLINT * StringLength2Ptr);

SQLBrowseConnect supports an iterative method of discovering and enumerating the
attributes and attribute values required to connect to a data source.

Each call to SQLBrowseConnect returns successive levels of attributes and attribute values
and the OutConnectionString contains the attributes needed for the next level. When all
levels have been enumerated, a connection to the data source is completed and a complete
connection string is returned by SQLBrowseConnect.

It uses the connection string keywords related to security and logon.

SQLBrowseConnect establishes an authenticated connection using the authentication
mechanism selected.

SQLBrowseConnect returns the following in the OutConnectionString for the connection
string attribute keywords:

*AUTHENTICATION:Authentication Mechanism={<MechanismList>}

where the braces are literal (they are returned by the driver) and the <MechanismList> is a
comma-separated list of colon-separated pairs of mechanism names and mechanism
labels. The asterisk indicates that the AUTHENTICATION attribute is optional.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 127

The mechanism name labels are user-friendly names intended by ODBC to be shown as
labels in a dialog box. If such names are available from TeraGSS then they will be used;
otherwise, the mechanism names will be used. Default mechanisms will not be indicated.

The mechanisms enumerated in the <MechanismList> are supported on the client if there
is not enough information in the connection string to establish a connection to the gateway.
Otherwise, the list will contain the authentication mechanisms supported by both the client
and gateway.

An example:

*AUTHENTICATION:Authentication Mechanism={TD2:Teradata 2, KRB5:Kerberos}
*AUTHENTICATIONSTRING:Authentication String=?

where the “?” indicates that a value is required.

SQLBrowseConnect returns SQL_ERROR and an error message if no authentication
mechanism can be selected.

Keywords for SQLDriverConnect() and SQLBrowseConnect()
The keywords listed in the following table can be specified in the connect string input of
SQLDriverConnect() or in the connect string input of SQLBrowseConnect() for ODBC Driver
for Teradata.

Keywords are not case sensitive. Optional keywords are designated by an *.

Note:

An attribute-key value enclosed in { } cannot have the } character.

Keyword Explanation

*ACCOUNTSTRING=<Account Name>

Or

*ACCOUNT=<Account Name>

See the “AccountString=<account>”
option in the the table titled Options
Configurable in the odbc.ini File in
Teradata DSN Options.

*CHARACTERSET=<Character set>

Or

*CHARSET=<Character set>

Default = ASCII

See the “CharacterSet=<charset
name>” option in Teradata DSN
Options.

DATASOURCEDNSENTRIES=<value>

Or

DSDNSENTRIES=<value>

Default = unassigned

See Data Source DNS Entries in
Teradata ODBC Driver Advanced
Options.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 128

Keyword Explanation

*DATETIMEFORMAT=[A|I]AA See the “DateTimeFormat=[A|I]AA
option in Teradata DSN Options.

The recommended settings are either
the AAA (default), or the IAA (optional)
formats. Because the Integer data type
has been deprecated for the TIME
format, it is not recommended. For
information, see Integer Time. The last
character that represents TIMESTAMP
is always ANSI.

*DEFAULTDATABASE=<database name>

Or

*DATABASE=<database name>

See the “Database=<database name>”
option in Data Source Specification
Section.

*DBCNAME=123.45.67.89 See the “DBCName=<IP-addr-or-
alias>” option in Data Source
Specification Section.

This setting is made in the Teradata
Server Info section in the ODBC Driver
Setup dialog box. For details, see
ODBC Driver Setup Parameters.

Only one name or IP address is valid.
When a name is specified, ODBC Driver
for Teradata automatically detects
associated COP entries. For example, if
the name contains a COPx suffix. For
more information, see Cop Discovery.

*DISPKANJICONVERRS=[Y | N] This DSN option is ignored. Invalid
characters result in substitute
characters being used.

*DOMAIN=<Domain Name> (Windows only) When the Domain
Name is provided for Third Party Sign-
On, you should provide the domain
name along with the username and
password.

If a domain name is not provided, then
the local domain is assumed.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 129

Keyword Explanation

*DONTUSEHELPDATABASE=[Y | N]

Or

*DONTUSEHELPDB=[Y | N]

Default = No

See the “DontUseHelpDatabase=[Yes |
No]” option in Teradata DSN Options.

*DRIVER=<ODBC Driver for Teradata> See the “Driver=<driver-path>” option
in Data Source Specification Section.

DSN=<DataSourceName> See the “data-source-name=<driver>”
option in ODBC Data Sources Section.

*ENABLEEXTENDEDSTMTINFO=[Y | N] Default = Y

See the
“EnableExtendedStmtInfo=[Yes | No]”
option in Teradata DSN Options.

*ENABLEREADAHEAD=[Y | N] Default = Y

See the “EnableReadAhead=[Yes | No]”
option Teradata DSN Options.

*ENABLERECONNECT=[Y | N] Default = No

See the “EnableReconnect=[Yes | No]”
option in Teradata DSN Options.

*IGNORESEARCHPATTERN=[Y | N]

Or

*IGNORESEARCHPAT=[Y | N]

Default = No

See the
“IgnoreODBCSearchPattern=[Yes | No]”
option in Teradata DSN Options.

*LOGINTIMEOUT=<Time out Value> Default = 20

See Teradata DSN Options.

*MAXRESPSIZE=<Resp Buffer size> Default = 65536 (64K)

See Teradata DSN Options.

MECHANISMKEY=<Value>

Or

AUTHENTICATIONPARAMETER=<Value>

Value=string

A string of characters opaque to the
driver, and regarded as a parameter to
the authentication mechanism. Passed
to the Teradata authentication
software called to set the
authentication mechanism.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 130

Keyword Explanation

For instructions on configuring this
parameter, see the
MechanismKey=<Value> description in
Teradata DSN Options.

For more information, see TDGSS
Support for UTF16.

You can use a Teradata Wallet
reference string as the value for this
keyword (or part of the value) by
specifying the$tdwallet() token. For
example:

AUTHENTICATIONPARAMETER=
$tdwallet(WalletRefString);

For more information, see Teradata
Wallet.

MECHANISMNAME=<MechanismName>

Or

AUTHENTICATION=<MechanismName>

Identifies the authentication
mechanism used for connections to the
data source.

The default is determined by a
configuration option set in an XML file
by the TeraGSS program,
tdgssconfigure.

For instructions on configuring the
authentication mechanism, see the
MechanismName=<MechanismName>
description in Teradata DSN Options.

For more information, see
Authentication Mechanisms.

*MSACCESSINTEROPMODE=[Y | N]

Or

*USEDATEDATAFORTIMESTAMPPARAMS=[Y
| N]

Default = No

(Windows Only)

*NOSCAN=[Y | N] Default = No

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 131

Keyword Explanation

See the “NoScan=[Yes | No]” option in
Teradata DSN Options.

*NTERRLOG=[Y | N] Default = No

(Windows only) When Yes is selected,
this option enables the user to log
errors returned by ODBC Driver for
Teradata in the Event Log.

When No is selected, no errors are
logged in the Event Log.

*PASSWORD=<value>

Or

*PWD=<value>

See the “Password=<password>”
option in Data Source Specification
Section.

You can use a Teradata Wallet
reference string as the value for this
keyword (or part of the value) by
specifying the $tdwallet() token. For
example:

PWD=$tdwallet(WalletRefString);

For more information, see Teradata
Wallet.

*PRINTOPTION= [P | N] Default = No

See the “PrintOption=[O | P]” option in
Teradata DSN Options.

*PWD2=<value> A secondary password used with the
default username when logging onto a
Teradata server. (See the Password
option in Data Source Specification
Section.)

If PWD2 is enabled, and the primary
password has expired, the driver will
automatically use this secondary
password. If PWD2 is not enabled, and
RunInQuietMode=No, then the driver
displays a prompt for a new password.
For more information, see the

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 132

Keyword Explanation

RunInQuietMode=[Yes | No] option in
Teradata DSN Options.

When SQLDriverConnect or
SQLBrowseConnect is called and PWD
has expired, connect keywords
recognized for ConnectStringInput are
extended by
PWD2=new_password_value.

When an attempt is made to establish
a Teradata session, a logon request is
issued using PWD. If a restricted logon
is returned because the password has
expired, a MODIFY is issued using
PWD2. The ConnectStringOutput is
then updated to reflect the password
used to establish the session.
Applications are responsible for
checking the password used for the
login and using it in their own login
processes.
• An expired password error will

return when calling SQLConnect,
because PWD2 does not support
the ConnectStringInput string.

• PWD2 might not work in
applications that normally cache
connection information.

• PWD2 does not work for passwords
stored in the Registry.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 133

Keyword Explanation

Note:

For PWD2 to work, an application
must be aware of how password
expiration is handled by the Teradata
session connection process and must
use that knowledge when sending
connection requests. Off-the-shelf
ODBC applications or 3rd party tools
cannot use PWD2 because their
connection code does not know how to
use the secondary password. PWD2
only works in applications that have
been customized to use it.

*RECONNECTWAIT=<wait time in min> Default = 10

See the “ReconnectWait=<integer>”
option in Teradata DSN Options.

RETRYONEINTR=[Y | N] Default = Y

This option allows the user to control
whether ODBC Driver for Teradata
should retry the socket system calls on
an EINTR or return an SQL_ERROR.

The socket system calls affected are:
• connect()
• select()
• recv()
• send()

See the “RETRYONEINTR=[Y | N]”
option in Teradata DSN Options.

*RETURNGENERATEDKEYS=<value> Default = N

See the
RETURNGENERATEDKEYS=<value>
description in Teradata DSN Options.

*SESSIONMODE=[ANSI|Teradata] The default value is determined by the
database based on the option used in
the Teradata Database CREATE or
MODIFY USER statement.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 134

Keyword Explanation

See the “SessionMode=[TeradataANSI]”
option in Teradata DSN Options. For
Windows configuration, see the Session
Mode menu description in Teradata
ODBC Driver Options.

*SPLOPTION=[Y | N] Default = No

See the “SplOption=[Y | N]” option in
Teradata DSN Options.

*TABLEQUALIFIER=[Y | N] Default = No

When this option is Yes, NULL values
are passed for the Table Qualifier
parameters in the Catalog API
functions.

When this option is No, NULL values
are not passed for the Table Qualifier
parameters in the Catalog API
functions.

*TCPNODELAY=[Y | N] Default = Yes

See the “TCPNoDelay=[Yes | No]” option
in Teradata DSN Options.

*TDMSTPORTNUMBER=<port number> Default = 1025

See the
“TDMSTPortNumber=<integer>”
option in Teradata DSN Options.

*USECOLUMNNAMES=[Y | N]

Or

*DONTUSETITLES=[Y | N]

Default = Yes

See the “DontUseTitles=[Yes | No]”
option in Teradata DSN Options.

USEDATAENCRYPTION=[Y |N]

Or

DATAENCRYPTION=[Y |N]

Default = No

When DATAENCRYPTION is Yes,
ODBC Driver for Teradata encrypts
data, and thus the Teradata gateway
and ODBC Driver for Teradata
communicate with each other in
encrypted manner.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 135

Keyword Explanation

When DATAENCRYPTION is No,
ODBC Driver for Teradata does not
encrypt data, except for logon
information.

USEREGIONALSETTINGS=[Y | N]

Or

REGIONALDECIMALSYMBOL=[Y | N]

Default = Yes

(Windows and Apple OS X) See the
“Use Regional Settings for Decimal
Symbol” option in Teradata ODBC
Driver Options.

*USERNAME=<value>

Or

*UID=<value>

See the “Username=<name>” option in
Data Source Specification Section.

*USEXVIEWS=[Y | N] Default = No

See the “UseXViews=[Yes|No]” option
in Teradata DSN Options.

SQLGetInfo - Get User Name
Syntax

SQLRETURN SQLGetInfo(
 SQLHDBC ConnectionHandle,
 SQLUSMALLINT InfoType,
 SQLPOINTER InfoValuePtr,
 SQLSMALLINT BufferLength,
 SQLSMALLINT * StringLengthPtr);

SQLGetInfo returns general information about the driver and data source associated with
a connection. The information types are described in the SQLGetInfo section of the ODBC
API Reference chapter in the ODBC Programmer's Reference.

There is an InfoType, which returns the username of the current database user:

SQLGetInfo Info Type Value Returned

SQL_USER_NAME A character string with the name used in a particular database,
which can be different from the login name.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 136

Previously, the username provided to ODBC (either explicitly or implicitly through SSO) was
identical to the Teradata Database username, but with the LDAP authentication
mechanism it is possible to map the mechanism username to a different Teradata Database
username.

ODBC Pattern Escape Character
The ODBC pattern escape character is supported for the following ODBC functions (up to
the limitations of Teradata):

• SQLColumnPrivileges

• SQLColumns

• SQLProcedureColumns

• SQLProcedures

• SQLTablePrivileges

• SQLTables

The Teradata LIKE clause does not contain an escape character in the same sense as ODBC;
therefore, pattern escape characters for one string must either be in use or not be in use.
The following table provides an example of the ODBC Pattern Escape Character:

Valid Syntax Illegal Syntax

“table_all” “tab_e_all”

“this%table” “this%table_”

“table_all\%”

If a string containing an escaped pattern character also contains an un-escaped pattern
character, the string will be converted to all un-escaped characters. For example:

The string “table_emp%” will be converted to “table_emp%”.

Large Objects
This section describes a set of ODBC data types and their mapping to the Teradata Large
Object Data Types.

LOB is a common term for relational data types that are able to contain large objects such
as image, video, and audio data. These are objects with a size that significantly exceeds the
size of traditional relational data types.

Teradata supports two types of Large Objects:

• BLOB

• CLOB

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 137

ODBC LOB Data Types
LONG data types is the ODBC terminology for Large Objects. ODBC defines two types of
LONG data types:

• SQL_LONGVARBINARY

• SQL_LONGVARCHAR

As with other ODBC data types, these are abstract types that must be mapped to real data
types as they are supported by the database.

Teradata LOB Data Types
The Teradata support contains two large object column types:

• BLOB – A variable-length binary string

• CLOB – A variable length character string

A BLOB is stored in the client system format and no translation occurs between the client
and the server. A CLOB has a server side character set of Latin, Unicode® or Kanji. CLOBs
are stored in the Teradata internal character format and translation occurs on the server.

Before the Teradata Native LOB Support was introduced, it was not possible to store really
large objects in Teradata Database. In some instances, VARBYTE and VARCHAR data
types, which are variable length with a maximum length of 64000 bytes, were sometimes
used to work around this limitation.

Teradata SQL and LOB Types
Table columns containing LOB data can be created using a Create Table SQL statement
in the following manner.

CREATE TABLE FOO (
 C01 INTEGER,
 C02 BLOB,
 C03 CLOB);

The CONVERT function of ODBC Driver for Teradata supports BLOB and CLOB data
types.

CONVERT will map

"{fn CONVERT(value_exp, SQL_LONGVARBINARY)}" to
"(value_exp (BLOB))"

and

"{fn CONVERT(value_exp, SQL_LONGVARCHAR)}" to "(value_exp(CLOB))".

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 138

LOB Limitations
Presently BLOB and CLOB Large Object types are limited to a size of about 2 GB
(2,097,088,000 bytes or characters). If the character set of a CLOB column is defined
with Unicode for its character set, it has a maximum size limit of approximately 1 GB.

Application Programming Considerations

Inserting LOB Data

To insert LOB data, ODBC programs have to take into account that the size of LOB data
may be very large and it will rarely be feasible to insert the data in one single large chunk.
Rather it is advisable to insert LOB data piecemeal.

The ODBC DATA_AT_EXEC feature should be used to implement this piecemeal insertion
into the database. When using this feature, data are inserted separately from the request
to insert these data.

The following ODBC identifiers are available to specify the use of DATA_AT_EXEC:

• SQL_LEN_DATA_AT_EXEC(LEN)

• SQL_DATA_AT_EXEC

SQL_DATA_AT_EXEC is a pseudo length which indicates that the length is unknown at the
time when the request to insert data is made and that data will be supplied later, possibly
in several chunks.

SQL_LEN_DATA_AT_EXEC is a macro which has the same effect as
SQL_DATA_AT_EXEC and in addition allows the total length of the data to be specified.
For Teradata LOBs this length is optional.

Restrictions

Both SQLPutData and Teradata Database have a restriction regarding inserting LOBs. It
is not possible to insert a NULL LOB value using SQLPutData.

Retrieving LOB Data

As described previously in Inserting LOB Data, LOB data is relatively large by nature,
therefore, retrieving LOB data, like inserting LOB data, will likely also be done in parts,
rather than reading the whole LOB in one operation.

To retrieve LOB data, use a series of SQLGetData calls.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 139

Migration Issues

Applications that migrate to an ODBC driver with Native LOB Support may now behave
differently than before the migration. This might be related to the use of LOBs.

There could be two reasons for the difference in behavior:

• The application relies on the ODBC feature that allows an application to query for all
available types and uses that information to generate SQL

• The application uses the ODBC types SQL_LONGVARBINARY and
SQL_LONGVARCHAR

Applications that query for all types will now receive information about two data types
(BLOB and CLOB). This may in some cases cause problems. See SQLGetTypeInfo.

Applications that are using SQL_LONGVARBINARY and SQL_LONGVARCHAR may
behave differently since these types are now mapped differently.

If an application falls into one of the mentioned categories it may be appropriate to
consider disabling the Native LOB functionality by setting UseNativeLOBSupport=No.

Note:

The option to set Native LOB Support is deprecated. For details, see Deprecated SQL
Transformations

LOB Considerations for the ODBC API
This section lists ODBC functions that are specifically affected by the addition of LOB
Support.

SQLPutData

It is not possible to insert a NULL value into a LOB column.

According to the ODBC Specification, there should be two ways to insert LOB NULL values
when using DATA_AT_EXEC:

• The application calls SQLBindParameter with the data length set to
SQL_NULL_DATA

• The application calls SQLPutData with the data length set to SQL_NULL_DATA

However, only the first of these alternatives is available due to a Teradata Database
restriction.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 140

SQLGetData

The following ODBC options relate to the use of SQLGetData, and are supported by the
ODBC driver:

• SQL_GD_ANY_COLUMN

• SQL_GD_ANY_ORDER

• SQL_GD_BOUND

The options listed in the following table specify how columns can be used in a SQLGetData
call.

Option Description

SQL_GD_ANY_COLUMN SQLGetData can be called for any unbound column,
including those before the last bound column.

Note:

The columns must be called in order of ascending column
number unless SQL_GD_ANY_ORDER is also returned.

SQL_GD_ANY_ORDER SQLGetData can be called for unbound columns in any order.

Note:

SQLGetData can be called only for columns after the last
bound column unless SQL_GD_ANY_COLUMN is also
returned.

SQL_GD_BOUND SQLGetData can be called for bound columns as well as
unbound columns.

Note:

A driver cannot return this value unless it also returns
SQL_GD_ANY_COLUMN.

ODBC supports these options for LOBs in order to provide the most flexible programming
model and backward compatibility.

SQLGetTypeInfo

SQLGetTypeinfo returns information about a specified ODBC data type. It may also return
information about SQL_ALL_TYPES, in which case it returns information about all the
ODBC data types.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 141

The LOB related information depends on whether or not LOB Support is available. LOB
Support is available when the database supports the LOB feature.

Note:

The option to set Native LOB Support is deprecated. For details, see Deprecated SQL
Transformations.

If LOB Support is available, when SQLGetTypeInfo is called with SQL_ALL_TYPES,
SQL_ALL_TYPES will include information about the SQL_LONGVARBINARY or
SQL_LONGVARCHAR data types.

If LOB Support is not available, then SQL_ALL_TYPES will not include information about
the SQL_LONGVARBINARY or SQL_LONGVARCHAR data types.

When SQLGetTypeInfo is called with either SQL_LONGVARBINARY or
SQL_LONGVARCHAR, it will return information about these data types. See the table that
follows.

LOB
Support
Available

SQL_ALL_TYPES
includes LONG
data types

SQL_LONGVARBINARY
maps to

SQL_LONGVARCHAR
maps to

Yes Yes BLOB CLOB

Yes Yes VARBYTE(3200) LONG VARCHAR

SQLColAttribute

SQLColAttribute returns information about columns in a result set. The fields listed in this
table contain important LOB-specific information.

Field Identifier Value

SQL_DESC_DISPLAY_SIZE CLOB = 2097088000

BLOB = 4194176000

SQL_DESC_NULLABLE “No”

Note:

It is set to No because of the restriction on the use of LOB
NULL values in SQLPutData.

SQL_DESC_SEARCHABLE SQL_FALSE

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 142

Field Identifier Value

Note:

BLOB and CLOB columns cannot be used in ORDER BY
and in a WHERE clause.

SQL_DESC_TYPE SQL_LONGVARBINARY for BLOB columns

SQL_LONGVARCHAR for CLOB columns

SQLColumns

SQLColumns generates information about columns in a specific table. The fields listed in
this table contain important LOB-specific information.

Column Name Value

DATA_TYPE SQL_LONGVARBINARY for BLOB columns

SQL_LONGVARCHAR for CLOB columns

TYPE_NAME BLOB for SQL_LONGVARBINARY

CLOB for SQL_LONGVARCHAR

IS_NULLABLE No

Note:

Set to No because of the restriction on the use of LOB NULL values
in SQLPutData.

SQLGetInfo

SQLGetInfo provides information about general database characteristics. The information
types listed in this table contain important LOB-specific information.

Information Type Value

SQL_MAX_ROW_SIZE_INCLUDES_LONG No

SQL_CONVERT_LONGVARBINARY 0x12fc38

SQL_CONVERT_LONGVARCHAR 0x12fc38

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 143

Information Type Value

SQL_NEED_LONG_DATA_LEN No

LOB Limitations

Presently LOB types are limited to a size of about 2 GB (2097088000 bytes or
characters). Even though the limit is 2 GB, there are times when the LOB size gets twice
as large.

The length of a CLOB based on 16-bit character set may get as large as 4 GB. The
maximum display size of a BLOB is also 4 GB. To hold a counter of that magnitude (4 GB),
an unsigned 32-bit value is required. Use 64-bit integers to accommodate future
extensions.

If the character set of a CLOB column is defined with Unicode for its character set, it has
a maximum size limit of approximately 1 GB.

Sample ODBC Programs Accessing LOB Data

LOB Retrieval Modes

Some Teradata Database instances contain Large Object (LOB) data types, such as
BLOB (Binary Large Object) and CLOB (Character Large Object). The new Teradata
ODBC Driver supports two ways of retrieving LOBs: Deferred Mode and Smart LOB mode.
Optimize driver performance by configuring the appropriate retrieval mode:

• In Deferred Mode, the driver sends an additional query to retrieve each LOB. By default,
the driver uses Deferred Mode.

• In SLOB Mode, the driver retrieves LOBs without sending any additional queries, but it
may need to cache some LOBs in memory.

To optimize driver performance, use Deferred Mode when retrieving large LOBs you do not
want to cache into memory; use SLOB Mode when you need to retrieve many small LOBs
and want to avoid sending a large number of queries. For example, SLOB Mode can improve
driver performance when retrieving geospatial data.

Note:

If SLOB Mode is not configured properly, it can decrease driver performance.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 144

SLOB Mode Usage Guidelines

SLOB Mode is applicable only when certain size restrictions are met:

• The LOB to be retrieved must be smaller than the size specified by the Max Single LOB
Bytes setting, MaxSingleLOBBytes. The driver falls back to using Deferred Mode when
retrieving LOBs that exceed this size. The default value for this setting is 4000.

• If the total amount of LOB data being retrieved from a row exceeds the size specified
by the Max Total LOB Bytes Per Row setting, MaxTotalLOBBytesPerRow, the driver uses
Deferred Mode to retrieve the remaining LOBs from that row after using SLOB Mode
to retrieve LOBs up to this size limit. The default value for this setting is 65536.

Before enabling SLOB Mode, be aware of the following conditions:

• Do not enable the Use Sequential Retrieval Only setting, UseSequentialRetrievalOnly,
if there is any possibility you might retrieve LOBs from columns in a non-sequential
order. For instance, do not enable this option and then execute a query that retrieves
LOBs from the third column in a table, then from the first column, and then from the
fifth column. If you enable this option and then retrieve LOBs non-sequentially, the
driver discards the LOBs that are returned through SLOB Mode and must then retrieve
them all again using Deferred Mode.

• When the Use Sequential Retrieval Only setting, UseSequentialRetrievalOnly, is
disabled, the driver caches the other LOBs it reads while looking for the one to be
retrieved. Caching large amounts of data in memory can decrease performance. To
prevent this problem, set the size limits so the driver does not apply SLOB mode to
large LOBs. LOB values that do not meet the requirements for SLOB Mode are
retrieved using Deferred Mode instead, and, therefore, do not get cached.

Controlling the Scope of SLOB Mode Settings

You can configure the settings for SLOB Mode on the connection level or on the statement
level. Because the optimal settings vary depending on the size of the specific LOBs you
are retrieving, it may be useful to adjust the settings for each statement as you work with
your data.

To configure settings for SLOB Mode on the connection level, specify the relevant driver
options in a DSN or connection string. These settings apply to all queries and operations
that are executed within the connection. You can override connection-level settings by
using statement attributes. To configure settings for SLOB Mode on the statement level,
set the following statement attributes:

• SQL_ATTR_MAX_SINGLE_LOB_BYTES: Use this attribute to specify the maximum
size of the LOBs (in bytes) the driver can retrieve using SLOB Mode. LOBs that exceed
this size are retrieved using Deferred Mode instead. This attribute corresponds to the
Max Single LOB Bytes driver setting, MaxSingleLOBBytes.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 145

• SQL_ATTR_MAX_LOB_BYTES_PER_ROW: Use this attribute to specify the maximum
size of LOB data per row (in bytes) the driver can retrieve using SLOB Mode. If the total
amount of LOB data contained in a row exceeds this size, the driver retrieves the LOBs
from that row using Deferred Mode instead. This attribute corresponds to the Max
Total LOB Bytes Per Row driver setting, MaxTotalLOBBytesPerRow.

• SQL_ATTR_USE_SEQUENTIAL_RETRIEVAL_ONLY: Use this attribute to indicate
whether you are retrieving LOB data from columns in sequential order. This attribute
corresponds to the Use Sequential Retrieval Only driver setting,
UseSequentialRetrievalOnly.

Max Single LOB Bytes

Key Name Default Value Required

MaxSingleLOBBytes 4000 No

Max Total LOB Bytes Per Row

Key Name Default Value Required

MaxTotalLOBBytesPerRow 65536 No

This is the maximum size of LOB data per row (in bytes) the driver can retrieve using Smart
LOB (SLOB) Mode. If the total amount of LOB data contained in a row exceeds this size,
the driver retrieves the LOBs from that row using Deferred Mode instead.

If this option is set to 0, SLOB Mode is disabled, and the driver retrieves all LOB data using
Deferred Mode.

Note:

As an alternative to using this option, specify this setting on the statement level rather
than the connection level by using the SQL_ATTR_MAX_LOB_BYTES_PER_ROW
statement attribute.

Use Sequential Retrieval Only

Key Name Default Value Required

UseSequentialRetrievalOnly Clear (0) No

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 146

This option indicates to the driver whether you are retrieving LOB data from columns in
sequential order or non-sequential order. When working in Smart LOB (SLOB) Mode, the
driver reads and caches LOB data differently depending on this setting.

• Enabled (1): When working in SLOB Mode, the driver does not cache the other LOBs it
reads while looking for the one to be retrieved. Because the driver can retrieve LOBs
in a single pass if they are queried sequentially, the driver does not need to cache them.

• Disabled (0): When working in SLOB Mode, the driver caches the other LOBs that it
reads while looking for the one to be retrieved. This caching allows the driver to
successfully retrieve SLOBs in any order.

Note:

Do not enable this option if there is any possibility you might retrieve LOBs from
columns in a non-sequential order. For instance, do not enable this option and then
execute a query that retrieves LOBs from the third column in a table, then from the
first column, and then from the fifth column. If you enable this option and then retrieve
LOBs non-sequentially, the driver discards the LOBs that are returned through SLOB
Mode and must then retrieve them all again using Deferred Mode.

As an alternative to using this option, you can specify this setting on the statement
level rather than the connection level by using the
SQL_ATTR_USE_SEQUENTIAL_RETRIEVAL_ONLY statement attribute.

Differences in Driver Implementation

The new driver has defaults to determine which mode to transfer LOB data with. These
default sizes may be different than past versions as we try to provide values that fit most
cases.

If the LOB is too large, the driver will use Deferred Mode as this is faster if you do not want
to cache into memory. SLOB is better in certain cases, such as when working with
geospatial data.

There are differences between old driver and the new driver's SLOB implementation:

• The new driver can cache, or attempt to cache, up to 2GB of all SLOBs in a row.

• The old driver only caches two Response Buffers, up to 32MB.

The new driver has three configuration parameters:

• 1- Enable SLOB Random Access

• 2- Max size of one SLOB

• 3- Max size of all SLOBs in a Row

When #1 is set to True, the new driver will cache up to #3, potentially up to 2GB.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 147

Creating a Table with BLOB Data

The following CREATE TABLE statement is used to create the table used in the following
code samples.

create table blobtable(id integer, image blob);

Inserting LOB Data

This section contains sample source code that inserts LOB data.

The first step is to prepare a parameterized insert statement. The first parameter is a
numeric key used to identify this row. The second parameter is the BLOB data.

Note:

The second parameter is specified as a SQL_LONGVARBINARY data type.

The length of the LOB data is specified in the SQL_LEN_DATA_AT_EXEC macro call.

SQLINTEGER id;
SQLCHAR image[IMAGEPART_LEN];
SQLINTEGER cbid = 0;
SQLUINTEGER cbimage = 0;
SQLRETURN retcode;

retcode = SQLPrepare(hstmt,
 (SQLCHAR *)"insert into blobtable (id, image) values (?, ?)",
 SQL_NTS);
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

 // Bind the parameters.
 retcode = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,
 SQL_C_SLONG, SQL_INTEGER, 10, 0, &id, 0, &cbid);
 retcode = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_LONGVARBINARY, LOBSIZE, 0, (SQLPOINTER) 2, 0,
 &cbimage);
 //Set the 1. parameter (id)

 id = 1001;
 //Set the 2. parameter (image)
 cbimage = SQL_LEN_DATA_AT_EXEC(0);

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 148

Note:

Setting the length to 0 as in SQL_LEN_DATA_AT_EXEC(0) means that the length is
unknown.

The next step is to insert the data. The LOB data may be very large and the data are
therefore inserted in chunks.

 // Execute the request
 retcode = SQLExecute(hstmt);

 // For the data-at-execution parameter (2. parameter)
 // call SQLParamData and SQLPutData repeatedly
 // to insert the BLOB data in parts.
 while (retcode == SQL_NEED_DATA) {
 retcode = SQLParamData(hstmt, NULL);
 while (GetUserData(image, IMAGEPART_LEN)) {
 SQLPutData(hstmt, image, IMAGEPART_LEN);
 }
 }
}

Retrieving LOB Data

LOB data should be retrieved using SQLGetData to be able to retrieve and process LOB
data in parts. The following code fragment illustrates that. Note the loop to handle 2 BLOB
column.

SQLINTEGER id;
SQLCHAR image[IMAGEPART_LEN];
SQLINTEGER cbid = 0;
SQLUINTEGER cbimage = 0;
SQLRETURN retcode;

retcode = SQLExecDirect(hstmt, (SQLCHAR*)"select id, image from blobtable",
SQL_NTS);

while (retcode == SQL_SUCCESS) {
 retcode = SQLFetch(hstmt);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

 /* Get data for column 1 */
 SQLGetData(hstmt, 1, SQL_C_ULONG, &id, 0, &cbid);

 /* Get data for column 2 */

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 149

 while (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
 {
 retcode= SQLGetData(hstmt, 2, SQL_C_CHAR, image, IMAGEPART_LEN,&cbimage);
 switch (retcode)
 {
 case SQL_SUCCESS_WITH_INFO:
 case SQL_SUCCESS:
 processimage(id, image);
 break;
 case SQL_NO_DATA:
 break;
 case SQL_ERROR:
 default:
 processerror(retcode);
 break;
 }
 }
 }

User-Defined Functions
ODBC support of Teradata Database user-defined functions is transparent to the ODBC
user, and should have no effect on existing user applications.

The full specification of the syntax, format and rules for both creating and invoking User
Defined Functions (UDF) is beyond the scope of this document. See SQL Reference: UDF,
UDM, and External Stored Procedure Programming for details on how to create and invoke
user-defined functions.

Return Codes
The following tables lists the ODBC API return codes for calls that execute SQL statements
performing builds of user-defined functions:

Return Code Description

SQL_SUCCESS_WITH_INFO The build of the UDF was performed on the DBS and the
UDF was created successfully. The output should be
examined for possible warnings in the build of the UDF.

SQL_ERROR The build of the UDF failed on the DBS and the UDF was
not created.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 150

In both cases the output from the build is available to the client as a sequence of diagnostic
status records that may be retrieved using SQLGetDiagRecord() and SQLGetDiagField().

The first diagnostic record contains the status of the UDF creation from the DBS.

The subsequent diagnostic records contain all output from the build as message texts and
repeat the SQLSTATE and native error code from the first record.

Parameter Markers
Parameters to UDFs in Teradata Database are input parameters. ODBC allows UDF
parameters to be specified by parameter markers and bound by SQLBindParameter with
InputOutputType SQL_PARAM_INPUT.

Table Functions
A table function is a form of UDF that can only be specified in the FROM clause of a SELECT
statement. It is treated as a derived table subquery.

A table function returns one table row at a time for each invocation. The function is written
in C or C++ and can only be invoked in the FROM clause of a SELECT statement. The
function cannot be invoked from any other place.

Table functions run in parallel on all AMPs, however, the table function developer can
determine which AMPs will participate, and which AMPs will not participate in the function.

Table functions are created with a CREATE FUNCTION statement. The dictionary entries
are created for the new function type. There is no difference in how that process works. The
UDF code is then compiled and linked, and the library distributed as required to all nodes.

Because the function produces a table, a row at a time, it requires the column definitions
and their data types.

Like a UDF, if the table function does I/O, the function needs to include the new external
security clause that is used to associate a client user with the execution of the table
function.

It either associates the function with the INVOKER of the function, or with the DEFINER of
the function. This is controlled by the developer of the function.

A table function returns a table a row at a time in a loop to the caller of the function. The
function is capable of reading an external file or simply producing the rows of a table based
on the input arguments passed to it. It does this by having the user specify the function in
place of the FROM clause in an SQL SELECT statement.

The table function essentially creates a derived table from an external source (a native OS
file or message queue). It can also produce the rows solely from the input arguments. For
example an input argument could be a reference to a CLOB that contains XML text. From
that CLOB it could parse the XML text and output a whole set of SQL rows.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 151

Restrictions
The ability to create a UDF function with the UDF source located on the client is restricted.
If you try to create a UDF from source on the client, a message will be returned indicating
UDFs created from source on the client are not supported.

User-Defined Types and User-Defined Methods
User-Defined Types (UDT) and User-Defined Methods (UDM) are supported by ODBC Driver
for Teradata. The full specification of the syntax, format and rules for using UDTs and UDMs
is beyond the scope of this document. See SQL Reference: UDF, UDM, and External Stored
Procedure Programming for details on how to create and use UDTs and UDMs.

Importing and Exporting UDT Values
A UDT can exist only on the Teradata Database server. Each UDT has an associated from-
sql routine and to-sql routine. The from-sql routine generates a predefined type value
from a UDT. It is automatically invoked when a UDT is exported from the Teradata Database
server to a client system. The to-sql routine constructs a UDT value from a predefined
type value. It is automatically invoked when importing values from a client system into a
UDT on the Teradata Database server. The from-sql routine and to-sql routine create a
mapping between a UDT and a predefined type. The predefined type is called the external
type of a UDT. A client application only deals with the external type; it does not deal directly
with the UDT value.

For example, if a UDT named FULLNAME exists and the external type associated with
FULLNAME is VARCHAR(46), then during an export of FULLNAME values, the Teradata
Database server converts the values from FULLNAME values to VARCHAR(46) values by
invoking the from-sql routine associated with the FULLNAME UDT. As a result, the client
should expect to receive the data in the same format as it receives VARCHAR(46) values.

Similarly, when values are provided by the client for import into a FULLNAME UDT, the client
should provide values like it would provide values for a VARCHAR(46) field, and the
Teradata Database server then converts the values from VARCHAR(46) to FULLNAME
values by invoking the to-sql routine associated with the FULLNAME UDT.

Importing UDT Values
ODBC Driver for Teradata can be used to import values into a UDT column. Use ODBC
Driver for Teradata to import values into tables containing UDT columns in the same manner
as is done for other tables. The application handles the UDT columns in the same manner
as is done for other tables. The application should handle the UDT columns like it would
handle a column containing the external type associated with that UDT. This external type

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 152

is always a predefined Teradata Database type. When inserting into a UDT column,
Teradata Database automatically converts from the external type to UDT internal format.

Using User-Defined Types with ODBC
ODBC applications always transfer values of a UDT as values of the external type
associated with the UDT and the external type is always a predefined Teradata Database
type. For example, when the select-list of a SELECT statement contains a UDT expression,
the Teradata Database server automatically converts the UDT data to its external type
before returning the data to the ODBC application. When inserting into a UDT column, the
Teradata Database server automatically converts the external type data to UDT internal
format. Therefore, the use of UDTs in requests and result sets is transparent to the ODBC
application.

Creating a UDT using ODBC Driver for Teradata is done in a similar manner to creating
other database objects. The ODBC client calls the ODBC SQLExecDirect() functions (or
SQLPrepare() plus SQLExecute() to issue the appropriate “CREATE TYPE...” SQL
statement followed by “CREATE METHOD...”, “CREATE TRANSFORM...”, and “CREATE
ORDERING...” statements as needed to fully create the type.

UDTs are visible in the ODBC catalog functions and in Results.

User-Defined Methods
The use of UDMs in ODBC is similar to the use of UDFs in ODBC.

Refer to User-Defined Functions.

Return Codes
SQL statements that CREATE/REPLACE/ALTER/DROP user-defined types or methods
and SQL statements that CREATE/REPLACE/ALTER UDT casts, orders, or transforms
may result in UDFs being built on the database server. The ODBC API return codes for calls
that execute these SQL statements are the same as for calls that build user-defined
functions.

See User-Defined Functions.

Catalog Functions
Some catalog functions in the new driver behave differently compared to the old driver. The
functions, and the differences between the new driver and the old driver are described in the
following sections.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 153

Catalog Function Description

SQLTables Returns the value “TYPE” in the TABLE_TYPE column for user-
defined types. The type name is returned in the TABLE_NAME
column.

SQLColumns Returns the value SQL_UNKNOWN_TYPE (zero) in the
DATA_TYPE for a UDT column. The UDT name is returned in
the TYPE_NAME column.

SQLProcedures Returns names of user-defined methods in addition to names
of macros, procedures, and user-defined functions.

The value of the PROCEDURE_TYPE column for a user-defined
method is SQL_PT_PROCEDURE.

SQLProcedureColumns Returns parameter information for user-defined methods. Also,
parameter types might be UDTs and these are returned as for
the SQLColumns catalog function (SQL_UNKNOWN_TYPE in
DATA_TYPE column and UDT name in TYPE_NAME column).

The output for TD_ANYTYPE parameters results in the value
SQL_UNKNOWN_TYPE in the DATA_TYPE column and the
string “TD_ANYTYPE” (without quotes) in the TYPE_NAME
column.

All Catalog Functions

The old driver returns some column names differently depending on whether the driver is
working in an ODBC 2.x or 3.x environment. The new driver always returns ODBC 3.x column
names, even when working in an ODBC 2.x environment.

SQLBindParameter

Binding Date, Time, and Timestamp Literals

When binding any of these types of literals as a parameter, the old driver accepts literals
that contain extra spaces. The new driver only accepts literals that are specified in the exact
format specified in the ODBC specification. If you try to bind a literal that does not use the
required format, the new driver returns the following error:

[Simba][Support] (40550) Invalid character value for cast specification.

For more information about the required format, see Date, Time, and Timestamp Literals in
the ODBC Programmers’ Reference located at:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 154

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-
timestamp-literals.

As an example, both drivers accept the value {d '1995-01-15'}, but only the old driver
accepts the value { d '1995-01-15'}. Note the missing space in the first value before 'd',
but the inserted space in the second value.

Returning Error Information

The new driver responds to certain errors differently than the old driver as described below.

• The new driver does not support SQL_ARRAY_STATUS_PTR and
SQL_DIAG_ROW_NUMBER for parameter sets, so the driver does not set these
properties when an error occurs in a query that contains a parameter set.

• If no errors occurred, but some parameter sets were ignored, then the old driver sets
SQL_ATTR_PARAMS_PROCESS_PTR to SQL_ATTR PARAMSET_SIZE minus the
number of ignored sets. The new driver sets SQL_ATTR_PARAMS_PROCESSED_PTR
to the exact value of SQL_ATTR_PARAMSET_SIZE.

This behavior of the new driver is consistent with the ODBC specification.

For more information, see the Error Information in SQLBindParameter Function in the
ODBC Programmers’ Reference: https://docs.microsoft.com/en-us/sql/odbc/
reference/syntax/sqlbindparameter-function.

Using SQL_DEFAULT_PARAM

When SQL_DEFAULT_PARAM is specified as an indicator via the StrLen_or_IndPtr
argument, the old driver ignores it and instead uses the value stored in the buffer. Depending
upon the environment in which SQL_DEFAULT_PARAM is being used, the new driver returns
one of the following:

• If it is specified in a stored procedure call, the new driver uses the value NULL to
complete the stored procedure call and returns SQL_SUCCESS_WITH_INFO.

• If it is specified in something other than a stored procedure call, the new driver returns
SQL_ERROR and does not execute the statement.

The behavior of the new driver is consistent with the ODBC specification, which states that
SQL_DEFAULT_PARAM is valid only when used with a stored procedure call. Teradata
Database does not support default parameters for stored procedures, so the new driver
uses NULL as the value for SQL_DEFAULT_PARAM.

For more information, see SQLBindParameter Function in the ODBC Programmers’
Reference: https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/
sqlbindparameter-function.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 155

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-timestamp-literals
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-timestamp-literals
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function

Query Parameter Binding

When binding query parameters, the new driver supports different use cases than the old
driver.

Old Driver New Driver

When binding JSON or WJSON data to
a parameter, the old driver returns an
error.

The new driver supports binding JSON and
WJSON data to parameters.

The old driver does not support binding
for SQL_DECIMAL and SQL_NUMERIC
data that has a negative scale.

The new driver supports binding for these
types of values, which is consistent with the
ODBC specification: https://
docs.microsoft.com/en-us/sql/odbc/
reference/appendixes/decimal-digits.

The old driver does not support binding
for SQL_DECIMAL and SQL_NUMERIC
data that has a precision that is less
than 1.

The new driver supports binding for
SQL_DECIMAL and SQL_NUMERIC data that
has a precision of 0, in order to support binding
for NULL values.

When calling SQLBindParameter, the
old driver verifies the column sizes of the
data and then modifies the column sizes
of the input if needed.

The new driver does not verify column sizes or
modify the input from SQLBindParameter.
When binding LOB data types, the new driver
uses the values returned by GetMaxLobBytes()
or MaxJSONBytes() as the maximum column size
of the LOB data.

Output Parameter Binding

When binding output parameters, a data type conversion is sometimes required. In this case,
the old driver converts the output data to its corresponding SQL type regardless of the
data types specified in SQLBindParameter. In contrast, the new driver converts the output
data to the specified SQL type, or returns a conversion error if the types are not compatible.
The new driver’s behavior is consistent with the ODBC specification.

For example, given the following procedure:

create procedure CharOutputStoredprocedure(OUT param1 CHAR)
cs1: BEGIN
SET param1 = 'A';
END cs1;

Assume that you bind the output parameters as follows:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 156

https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits

SQLBindParameter(
stmt,
1,
SQL_PARAM_OUTPUT,
SQL_C_CHAR,
SQL_CHAR,
1024,
0,
&out,
1024,
&cbRetParam)

The given SQL type is the same as the SQL type of the original parameter, so the data does
not need to be converted. The old driver and the new driver both successfully bind the data
and return the value A.

However, if you bind the output parameter as follows, then the data must be converted from
CHAR to SQL_INTEGER:

SQLBindParameter(
stmt,
1,
SQL_PARAM_OUTPUT,
SQL_C_CHAR,
SQL_INTEGER,
1024,
0,
&out,
1024,
&cbRetParam)

The conversion fails because A is not a valid SQL_INTEGER value. The old driver handles
this situation by converting and binding the output data to SQL_CHAR instead. The new
driver tries to convert the data to SQL_INTEGER and then returns a conversion error with
SQL state 22018.

SQLBindParameter and Data Types with Fractional Seconds

When calling SQLBindParameter with a data type that contains fractional seconds, you
must set the DecimalDigit to a value up to 6, the maximum the database supports. Previous
to 16.20, this could be any number between 0-6 with the same result as if you were to set
it to 6, but this is incorrect and no longer supported.

As an example, TIMESTAMP(0) is no longer valid if you are passing in a fractional second
because according to the ODBC specification, you have specified zero decimal digits and
will receive an error if you try to pass in a fractional second.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 157

You can specify a maximum of up to 6 decimal digits, as this is the limit of the Teradata
Database.

It is acceptable to send less than your specified number of decimal digits.

You can optionally pad out to 9 decimal digits with zeros without issue.

SQLCancel

The new driver responds to timing or processing state of the statement differently than the
old driver.

The ODBC specification defines the following behavior for SQLCancel in situations where
no processing has been done for the statement:

• In ODBC 3.5, SQLCancel has no effect on the statement. To close a cursor, applications
need to call SQLCloseCursor instead of SQLCancel.

• In ODBC 2.x, SQLCancel has the same effect as SQLFreeStmt with the SQL_CLOSE
option. This behavior is defined only for the sake of completeness; applications should
call SQLFreeStmt or SQLCloseCursor instead to close cursors.

For more information, see SQLCancel Function in the ODBC API Reference: https://
msdn.microsoft.com/en-us/library/ms714112%28v=vs.85%29.aspx.

Old Driver New Driver

When executing statements asynchronously, if the
execution is completed before SQLCancel is called,
the old driver returns HY008.

The new driver returns the result of
the statement execution,
(SQL_SUCCESS or SQL_ERROR).

If SQLCancel is called before any processing has
been done for the statement, the old driver closes
the statement regardless of whether the driver is
working in ODBC 2.x mode or ODBC 3.x mode.

Closing the statement reflects behavior that is
consistent with the ODBC 2.x specification, but not
the ODBC 3.x specification.

The new driver does not close the
statement when it is working in
ODBC 3.x mode, and this behavior is
consistent with the ODBC 3.x
specification.

SQLForeignKeys

In the old driver, the columns UPDATE_RULE and DELETE_RULE are returned as empty
strings. In the new driver, these columns are instead returned as NULL.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 158

SQLGetConnectAttr

The following table lists the results of the new and old drivers.

Function Old Driver Returns New Driver Returns

SQL_ATTR_ASYNC_ENABLE Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,
*ColumnNumber =
-1, *RowNumber =
-1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Invalid
Attribute"

Return: SQL_SUCCESS=0
Out: *ValuePtr =
SQL_ASYNC_ENABLE_OFF
= 0,
*StringLengthPtr = 4

SQL_ATTR_DISCONNECT_BEHAVIOR Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]

Return: SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> dbc:
szSqlState =
"HY092",
*pfNativeError =
10210, *pcbErrorMsg
= 75, *ColumnNumber
= -1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC]
(10210) Attribute
identifier invalid
or not supported:
114"

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 159

Function Old Driver Returns New Driver Returns

Invalid
Attribute"

SQL_ATTR_ENLIST_IN_DTC Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Invalid
Attribute"

Return: SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> dbc:
szSqlState =
"HY092",
*pfNativeError =
10210, *pcbErrorMsg
= 76, *ColumnNumber
= -1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC]
(10210) Attribute
identifier invalid
or not supported:
1207"

SQL_ATTR_PACKET_SIZE Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HYC00",
*pfNativeError =
0, *pcbErrorMsg
= 44,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 4096,
*StringLengthPtr = 4

SQL_ATTR_TRANSLATE_LIB Return:
SQL_SUCCESS=0

Return:
SQL_SUCCESS=0 Out:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 160

Function Old Driver Returns New Driver Returns

Out: *ValuePtr =
"쨀쫊쫊쫊쫊쫊쫊쫊쫊
쫊쫊쫊쫊쫊쫊쫊
쫊...",
*StringLengthPtr
= 0

*ValuePtr = "",
*StringLengthPtr = 0

SQLGetDiagField

At this time, the new driver does not support setting the following:

• SQL_DIAG_CURSOR_ROW_COUNT

• SQL_DIAG_ROW_COUNT

SQLGetInfo

The following table lists the results of the new and old drivers.

Function Old Driver Returns New Driver Returns

SQL_SQL_CONFORMANCE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
SQL_SC_SQL92_ENTRY = 1,
*StringLengthPtr = 4

SQL_CATALOG_NAME_SEPARATOR Return:
SQL_SUCCESS=0
Out: *InfoValuePtr

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = ".",
*StringLengthPtr = 2

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 161

Function Old Driver Returns New Driver Returns

= <unmodified>,
*StringLengthPtr = 0

SQL_CREATE_TABLE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_DROP_TABLE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_DROP_VIEW Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 162

Function Old Driver Returns New Driver Returns

<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

0x00000000, *StringLengthPtr
= 4

SQL_GETDATA_EXTENSIONS Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x0000000B =
SQL_GD_ANY_COLUMN |
SQL_GD_ANY_ORDER |
SQL_GD_BOUND,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x0000000F =
SQL_GD_ANY_COLUMN |
SQL_GD_ANY_ORDER |
SQL_GD_BLOCK | SQL_GD_BOUND,
*StringLengthPtr = 4

SQL_INDEX_KEYWORDS Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_LOCK_TYPES Return:
SQL_SUCCESS=0

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 163

Function Old Driver Returns New Driver Returns

Out: *InfoValuePtr
= 0x00000001 =
SQL_LCK_NO_CHANGE,
*StringLengthPtr = 4

0x00000002 =
SQL_LCK_EXCLUSIVE,
*StringLengthPtr = 4

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = 0,
*StringLengthPtr = 4

SQL_NUMERIC_FUNCTIONS Return:
SQL_SUCCESS=0
Out:*InfoValuePtr =
0x00014D01 =
SQL_FN_NUM_ABS |
SQL_FN_NUM_EXP |
SQL_FN_NUM_LOG |
SQL_FN_NUM_MOD |
SQL_FN_NUM_SQRT |
SQL_FN_NUM_PI,
StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00194D01 = SQL_FN_NUM_ABS |
SQL_FN_NUM_EXP |
SQL_FN_NUM_LOG |
SQL_FN_NUM_MOD |
SQL_FN_NUM_SQRT |
SQL_FN_NUM_PI |
SQL_FN_NUM_LOG10 |
SQL_FN_NUM_POWER,
*StringLengthPtr = 4

SQL_ODBC_SAG_CLI_CONFORMANCE Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
=
SQL_OSCC_COMPLIANT
= 1,
*StringLengthPtr = 2

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
SQL_OSCC_NOT_COMPLIANT = 0,
*StringLengthPtr = 2

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 164

Function Old Driver Returns New Driver Returns

SQL_POS_OPERATIONS Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000001 =
SQL_POS_POSITION,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_QUALIFIER_NAME_SEPARATOR Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr = 0

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = ".",
*StringLengthPtr = 2

SQL_SCROLL_CONCURRENCY Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000001 =
SQL_SCCO_READ_ONLY,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000003 =
SQL_SCCO_READ_ONLY |
SQL_SCCO_LOCK,
*StringLengthPtr = 4

SQL_SQL92_GRANT Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000010 =
SQL_SG_WITH_GRANT_OPTION,
*StringLengthPtr = 4

SQL_SQL92_PREDICATES Return:
SQL_ERROR=-1Return:
SQL_ERROR=-1
Out: *InfoValuePtr

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00003F07 = SQL_SP_EXISTS |
SQL_SP_ISNOTNULL |

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 165

Function Old Driver Returns New Driver Returns

= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

SQL_SP_ISNULL | SQL_SP_UNIQUE
| SQL_SP_LIKE | SQL_SP_IN |
SQL_SP_BETWEEN |
SQL_SP_COMPARISON |
SQL_SP_QUANTIFIED_COMPARISON,
*StringLengthPtr = 4

SQL_SQL92_RELATIONAL_JOIN_OPERATORS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x0000015A =
SQL_SRJO_CROSS_JOIN |
SQL_SRJO_FULL_OUTER_JOIN |
SQL_SRJO_INNER_JOIN |
SQL_SRJO_LEFT_OUTER_JOIN |
SQL_SRJO_RIGHT_OUTER_JOIN,
*StringLengthPtr = 4

SQL_SQL92_STRING_FUNCTIONS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000006 = SQL_SSF_LOWER |
SQL_SSF_UPPER,
*StringLengthPtr = 4

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 166

Function Old Driver Returns New Driver Returns

*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

SQL_STATIC_SENSITIVITY Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000000,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000003 = SQL_SS_ADDITIONS
| SQL_SS_DELETIONS,
*StringLengthPtr = 4

SQL_XOPEN_CLI_YEAR Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = "1995",
*StringLengthPtr = 8

SQLGetStmtAttr

The following table lists the results of the new and old drivers.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 167

Function Old Driver Returns New Driver Returns

SQL_ATTR_CURSOR_SCROLLABLE Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError =
0, *pcbErrorMsg =
44, *ColumnNumber
= -1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0
Out: *ValuePtr =
0,
*StringLengthPtr
= 4

SQL_ATTR_CURSOR_SENSITIVITY Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError =
0, *pcbErrorMsg =
44, *ColumnNumber
= -1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0
Out: *ValuePtr =
0,
*StringLengthPtr
= 4

SQL_ATTR_KEYSET_SIZE Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 0,
*StringLengthPtr =
<unmodified>

Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
stmt: szSqlState
= "HY092",

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 168

Function Old Driver Returns New Driver Returns

*pfNativeError =
10210,
*pcbErrorMsg =
73, *ColumnNumber
= -1, *RowNumber
= -1 MessageText
= "[Teradata]
[ODBC] (10210)
Attribute
identifier
invalid or not
supported: 8"

SQL_ATTR_RETRIEVE_DATA Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError =
0, *pcbErrorMsg =
44, *ColumnNumber
= -1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0
Out: *ValuePtr =
SQL_RD_ON = 1,
*StringLengthPtr
= 4

SQL_ATTR_ROW_NUMBER

NOTICE
The old driver always returns
SQL_ROW_NUMBER_UNKNOWN;
the new driver returns the actual
number of the current row in the
entire result set.

Return:
SQL_SUCCESS=0
Out: *ValuePtr = 0,
*StringLengthPtr =
<unmodified>

Return:
SQL_SUCCESS=0
Out: *ValuePtr =
1,
*StringLengthPtr
= 4

SQL_ATTR_SIMULATE_CURSOR Return:
SQL_SUCCESS=0 Out:

Return:
SQL_ERROR=-1 Out:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 169

Function Old Driver Returns New Driver Returns

*ValuePtr =
SQL_SC_NON_UNIQUE
= 0,
*StringLengthPtr =
<unmodified>

*ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
stmt: szSqlState
= "HY092",
*pfNativeError =
10210,
*pcbErrorMsg =
74, *ColumnNumber
= -1, *RowNumber
= -1 MessageText
= "[Teradata]
[ODBC] (10210)
Attribute
identifier
invalid or not
supported: 10"

SQLGetTypeInfo

The new driver returns an additional custom column "USER_DATA_TYPE" at index 20.

New driver columns:

1, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
2, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
3, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, LITERAL_PREFIX, 14, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
5, LITERAL_SUFFIX, 14, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
6, CREATE_PARAMS, 13, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
7, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
8, CASE_SENSITIVE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
9, SEARCHABLE, 10, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
10, UNSIGNED_ATTRIBUTE, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, FIXED_PREC_SCALE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
12, AUTO_UNIQUE_VALUE, 17, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
13, LOCAL_TYPE_NAME, 15, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
14, MINIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
15, MAXIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
16, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
17, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 170

18, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
19, INTERVAL_PRECISION, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
20, USER_DATA_TYPE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
21, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

Old driver columns:

1, TYPE_NAME, 9, SQL_VARCHAR=12, 39, 0, SQL_NO_NULLS=0
2, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
3, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, LITERAL_PREFIX, 14, SQL_VARCHAR=12, 11, 0, SQL_NULLABLE=1
5, LITERAL_SUFFIX, 14, SQL_VARCHAR=12, 18, 0, SQL_NULLABLE=1
6, CREATE_PARAMS, 13, SQL_VARCHAR=12, 18, 0, SQL_NULLABLE=1
7, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
8, CASE_SENSITIVE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
9, SEARCHABLE, 10, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
10, UNSIGNED_ATTRIBUTE, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, FIXED_PREC_SCALE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
12, AUTO_UNIQUE_VALUE, 17, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
13, LOCAL_TYPE_NAME, 15, SQL_VARCHAR=12, 39, 0, SQL_NULLABLE=1
14, MINIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
15, MAXIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
16, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
17, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
18, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
19, INTERVAL_PRECISION, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
20, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

SQLProcedureColumns

The old driver uses SQL_VARCHAR for string columns. The new driver uses
SQL_WVARCHAR for string columns and returns two additional custom columns, at index
20 and 21.

New driver columns:

1, PROCEDURE_CAT, 13, SQL_VARCHAR=12, 1024, 0, SQL_NULLABLE=1
2, PROCEDURE_SCHEM, 15, SQL_VARCHAR=12, 30, 0, SQL_NULLABLE=1
3, PROCEDURE_NAME, 14, SQL_VARCHAR=12, 30, 0, SQL_NO_NULLS=0
4, COLUMN_NAME, 11, SQL_VARCHAR=12, 30, 0, SQL_NO_NULLS=0
5, COLUMN_TYPE, 11, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
6, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
7, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
8, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
9, BUFFER_LENGTH, 13, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
10, DECIMAL_DIGITS, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 171

11, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
12, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
13, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
14, COLUMN_DEF, 10, SQL_VARCHAR=12, 4000, 0, SQL_NULLABLE=1
15, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
16, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
17, CHAR_OCTET_LENGTH, 17, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
18, ORDINAL_POSITION, 16, SQL_INTEGER=4, 10, 0, SQL_NO_NULLS=0
19, IS_NULLABLE, 11, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
20, IS RESULT SET COLUMN, 20, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
21, USER_DATA_TYPE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
22, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

Old driver columns:

1, PROCEDURE_CAT, 13, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
2, PROCEDURE_SCHEM, 15, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, PROCEDURE_NAME, 14, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
4, COLUMN_NAME, 11, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
5, COLUMN_TYPE, 11, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
6, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
7, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
8, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
9, BUFFER_LENGTH, 13, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
10, DECIMAL_DIGITS, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, NUM_PREC_RADIX, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
12, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
13, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
14, COLUMN_DEF, 10, SQL_VARCHAR=12, 60, 0, SQL_NULLABLE=1
15, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
16, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
17, CHAR_OCTET_LENGTH, 17, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
18, ORDINAL_POSITION, 16, SQL_INTEGER=4, 10, 0, SQL_NO_NULLS=0
19, IS_NULLABLE, 11, SQL_VARCHAR=12, 3, 0, SQL_NULLABLE=1
20, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

SQLTables

When using pattern matching with a wildcard character (%), the default catalog metadata
is null, so the new driver returns SQL_INTEGER as the SQL Type for some columns.

For example, for the following call:

SQLTables(<empty string>, %, <empty string>, <null pointer>)

New driver returns:

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 172

icol, szColName, *pcbColName, *pfSqlType, *pcbColDef, *pibScale, *pfNullable
1, TABLE_CAT, 9, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
2, TABLE_SCHEM, 11, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, TABLE_NAME, 10, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, TABLE_TYPE, 10, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
5, REMARKS, 7, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1

Old driver returns:

icol, szColName, *pcbColName, *pfSqlType, *pcbColDef, *pibScale, *pfNullable
1, TABLE_CAT, 9, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
2, TABLE_SCHEM, 11, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, TABLE_NAME, 10, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
4, TABLE_TYPE, 10, SQL_VARCHAR=12, 17, 0, SQL_NULLABLE=1
5, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1

Results
UDTs information from results is available through the SQLColAttribute as shown in the
following table:

Field Identifier
Information returned
in Description

SQL_COLUMN_TD_UDT_INDICATOR NumericAttributePtr A numeric value that specifies
the UDT indicator.

If the SIP is disabled UDT
Indicator is unknown, this
variable contains a value zero.

SQL_COLUMN_TD_UDT_NAME CharacterAttributePtr Fully Qualified Type Name (for
example,
"SYSUDTLIB.ST_GEOMETRY",
"SYSUDTLIB.SSN", and so on).

If the SIP is disabled UDT data
type name is unknown, this
variable contains an empty
string.

Restrictions
When creating UDMs, the “CREATE METHOD...” statement must indicate that the file(s)
containing the definitions of the methods are located on the server; creating UDMs from
file(s) located on the client is not supported. If you try to create a UDM from file(s) on the

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 173

client, a message is returned indicating that UDMs created from file(s) on the client are not
supported. This restriction is similar to the restriction for UDFs.

Parameter Arrays
ODBC Driver for Teradata supports parameter arrays with limitations as described in
Restrictions.

Parameter arrays are directly supported by Teradata Database as a single SQL statement
with a set of parameter values. This is also called a DML array request since parameter
arrays are only allowed for DML statements.

Prior to Teradata Database support of DML array requests, ODBC Driver for Teradata
emulated parameter array support by executing a multi-statement request with a single SQL
statement for each set of parameter values.

Such emulation is still used for multi-statement requests containing one or more statements
using parameter arrays. For example, the following code executes two SQL statements in a
single request:

"SELECT * from T; INSERT INTO T values(?,?)"

where INSERT uses a parameter array.

In this case, an application may want to execute the two statements separately instead of
executing a multi-statement request. In other cases, the application may force the emulated
mode by appending a no-operation SQL statement to surmount a restriction for DML array
requests.

Performance
DML array support performance is superior to emulation using multi-statement requests.
Teradata Database can optimize a parameter array request, reducing the request size and
number of steps, while increasing the number of possible iterations. The best performance
is seen for small parameter sets where the array pack factor can be increased.

Using Parameter Arrays
To use arrays of parameters, the application needs to do the following:

1. (Optional, the default is column-wise.) Call SQLSetStmtAttr with an argument of
SQL_ATTR_PARAM_BIND_TYPE to specify column-wise or row-wise binding.

For column-wise binding, the value is SQL_BIND_BY_COLUMN. For row-wise binding,
the value is set to the size of() a row in the array holding the parameters.

2. (Optional, default is 1.) Call SQLSetStmtAttr with an argument of
SQL_ATTR_PARAMSET_SIZE to specify the number of sets of parameters.

An array request with only 1 parameter set is equivalent to a “non-array” request.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 174

3. (Required only if SQL_ATTR_PARAMSET_SIZE is greater than 1.) Call SQLSetStmtAttr
with an argument of SQL_ATTR_PARAM_STATUS_PTR to point to an array which
contains return status information for each set of parameter values.

4. (Optional) Call SQLSetStmtAttr with an argument of
SQL_ATTR_PARAM_OPERATION_PTR to point to an array used to exclude or include
sets of parameter values.

5. (Optional) Call SQLSetStmtAttr with an argument of
SQL_ATTR_PARAMS_PROCESSED_PTR to specify the address of a variable in which
the driver can return the number of sets of parameters processed, including error sets.

6. (Optional) Call SQLSetStmtAttr with an argument of
SQL_ATTR_PARAM_BIND_OFFSET_PTR to specify the address of a variable
containing an integer offset to be added to the ParameterValuePtr and
StrLen_or_IndPtr parameters to SQLBindParameter.

7. Call SQLBindParameter for each parameter to bind arrays to parameters.

8. Call one of the execution functions: SQLExecDirect or SQLPrepare/SQLExecute.

Note:

Only steps 7 and 8 are required, all other steps are optional.

Note:

It is not possible to distinguish an array request with array size 1 from a non-array
parameterized request.

The following figure illustrates the use of parameters.

When the statement is executed, ODBC Driver for Teradata uses the information it stored
to retrieve the parameter values and send them to the data source.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 175

The array pointed to by the SQL_ATTR_PARAM_OPERATION_PTR statement attribute
can be used to ignore rows of parameters. If an element of the array is set to
SQL_PARAM_IGNORE, the set of parameters corresponding to that element is excluded
from the SQLExecute or SQLExecDirect call. If fetched rows are used as input parameters,
the values of the row status array can be used in the parameter operation array.

If the SQL_ATTR_PARAM_STATUS_PTR statement attribute has been set, SQLExecute
or SQLExecDirect returns the parameter status array, which provides the status of each
set of parameters. The parameter status array is allocated by the application and filled in
by the driver. Its elements indicate whether the SQL statement was executed successfully
for the row of parameters or whether an error occurred while processing the set of
parameters. If an error occurs, the driver sets the corresponding value in the parameter
status array to SQL_PARAM_ERROR and returns SQL_ERROR. The application can check
the status array to determine which parameter rows were processed. Using the row number,
the application can often correct the error and resume processing.

The table that follows lists the types of DML statements with array support information.

DML Statement Description

ABORT Only when WHERE clause is present

DELETE All forms, except “Positioned”

EXECUTE macro The macro must be a single statement qualified for iteration

INSERT Includes INSERT ... SELECT

LOCKING Modifier Modified request must be qualified for iteration

MERGE Similar to UPDATE (Upsert Form)

ROLLBACK Only when WHERE clause is present (alias of ABORT)

SELECT Responses returned as in unfolded request

UPDATE (Searched
Form)

Includes complex and “unreasonable” updates

UPDATE (Upsert Form) UPDATE ... ELSE INSERT (Atomic UPSERT)

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 176

Restrictions

Array Requests Limit

Array requests are limited to 1 MB. This impacts the number of parameter sets that can
be applied to an array request. Assuming an SQL request text size of T bytes, a parameter
row size of R bytes, and N parameter rows, the limiting conditions are listed in the following
table:

Mode Limiting Conditions

Emulation mode N * R <= 64 KB and N * (T + R)<= 1 MB

Array support R <= 64 KB and T + N * R <= 1 MB

Each row is sent in a separate data parcel and is limited to 64 KB. The request text is not
replicated. The whole request must fit within the 1 MB request limit. With DML Array
Support, the number of rows that can be sent with a parameter array request is increased
at least 16 times and up to 31 times for a large row of 33 KB.

No Positional UPDATE/DELETE and SELECT INTO

The positional UPDATE/DELETE and the SELECT INTO statements cannot be used as
DML array requests.

No CALL Statements

Any statement used in an iterated request must be usable in a multi-statement request.
Because CALL statements are not permitted in multi-statement requests, CALL
statements and so on are not supported with the new DML array support feature or the
old emulated mode.

No DML Array Requests with Triggers

The DML array feature does not support tables with triggers. As a work around, the request
can be turned into a multi-statement request by appending a no-operation SQL
statement. This causes ODBC Driver for Teradata to emulate the array request as a series
of SQL requests that work on tables with triggers, but without the performance benefit of
the DML array request.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 177

Error Handling and Transaction Semantics
In the database, transaction commit, as well as request-level and transaction-level abort
for an array request matches the equivalent multi-statement request. Transaction
semantics are the same for emulated and non-emulated parameter array requests. The
entire parameter array request is rolled back, including those parameter rows already
processed.

Errors are handled exactly the same as they would be for the equivalent multi-statement
request. The error information returned from the database to the client in the resulting
failure parcel matches that from the unfolded request, and the parameter set that
generated the failure is identified by the statement number in the failure parcel.

If an error occurs while executing a parameter array statement, the execution function
returns an error and sets the row number variable to the number of the row containing the
error. It is data source-specific whether all rows except the error set execute or all rows
before (but not after) the error set execute. In case of an error, ODBC Driver for Teradata
always fails the whole parameter array request.

If an error occurs, the statement number in the failure parcel is used to derive the row
number of the failing parameter set and to set the corresponding
SQL_DIAG_ROW_NUMBER field of the diagnostic record.

The SQL_DIAG_COLUMN_NUMBER field of the diagnostic record is set by the driver to
SQL_COLUMN_NUMBER_UNKNOWN because the driver cannot determine the parameter
number for the failure.

The buffer specified by the SQL_ATTR_PARAMS_PROCESSED_PTR statement attribute
is set to the number of the failed parameter set.

Requests That Do Not Generate Result-Sets

For requests that do not generate result-sets, when errors are encountered, ODBC Driver
for Teradata sets the status value in the status array to SQL_PARAM_ERROR for the
parameter set that failed and all the other elements are set to
SQL_PARAM_DIAG_UNAVAILBLE, indicating that status is not available. This is because
the request can execute in parallel and there is no way to determine which parameter sets
were successfully executed before the failure occurred and the request was aborted.

The application can identify the failed parameter set and correct it if possible or resubmit
the request with the failed set by marking it as SQL_PARAM_IGNORE in the operations
array. The latter is more efficient than just submitting each parameter set one at time upon
failures.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 178

Result-Set Generating Requests

For result-set generating requests, the availability of status array values is driver-defined.
Status array values might be available after the statement has been executed or as result
sets are fetched. ODBC Driver for Teradata provides the status as results are fetched. For
example, the initial status for a given parameter set is undefined until the results
corresponding to the parameter set have been fetched.

New Parser
A new parser has been introduced in the ODBC Driver for Teradata 16.20 which permits the
database to handle more of the parsing. The Legacy Parser option is deprecated in ODBC
16.20.

Large Decimal and BIGINT Support
ODBC Driver for Teradata supports the use of DECIMAL data types with a precision of 38.
An application can determine the maximum precision by calling the ODBC API function
SQLGetTypeInfo.

ODBC Driver for Teradata supports 19-digit precision for BIGINT data. The BIGINT data
type has an exact numeric value with precision 19 and scale 0. The BIGINT is signed and has

a range between -263 ≤ n ≤ 263 - 1 or from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. It includes most (but not all) values with a decimal precision
of 19.

64-bit Support
The following reference is useful when working with ODBC on 64-bit systems:

• INFO: ODBC 64-Bit API Changes in MDAC 2.7, Article ID: 298678

http://support.microsoft.com/default.aspx?scid=kb;en-us;298678

• ODBC header files, specifically sql.h.

• README file delivered with ODBC Driver for Teradata. This file contains information
about compilation and linking with ODBC Driver for Teradata on 64-bit systems. The file
is located in the <InstallDir> on UNIX systems and available in the All Programs >
ODBC Driver for Teradata menu on Windows systems. On Apple OS X, the file is located
at:

/Library/Application Support/teradata/client/<TTU version>/odbc/README.

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 179

http://support.microsoft.com/default.aspx?scid=kb;en-us;298678

When compiling 64-bit applications for ODBC Driver for Teradata on the Linux/UNIX
system, it is important to use -DODBC64 to enable the 64-bit definitions in the Driver
Manager include files.

Extended Object Names (EON)
Object names include User, Database, Table, View, Macro, Column names, and many more.
Teradata Database 14.10 extends object names up to 128 characters and contains an
extended variety of characters, which includes almost all Unicode characters supported by
Teradata database, except pass-through characters. Additionally, object names may be
represented using the Unicode delimited identifier notation in different contexts.

Note:

User name, password, account string, and default database names can be used with
both the extended length and the extended set of characters in the connection string.
The configuration dialogs and the odbc.ini settings support the extended length and
the same character set as earlier releases of the ODBC driver.

SQLGetInfo
The following table lists info items in SQLGetInfo and reflect the extended object names:

Info Item Pre-14.10 Versions Version 14.10 and Later

SQL_MAX_COLUMN_NAME_LEN 30 Characters 128 Characters

SQL_MAX_SCHEMA_NAME_LEN 30 Characters 128 Characters

SQL_MAX_TABLE_NAME_LEN 30 Characters 128 Characters

SQL_MAX_USER_NAME_LEN 30 Characters 128 Characters

SQL_MAX_CURSOR_NAME_LEN 30 Characters 128 Characters

SQL_MAX_PROCEDURE_NAME_LEN 30 Characters 128 Characters

SQL_MAX_IDENTIFIER_LEN 30 Characters 128 Characters

6: ODBC Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 180

Overview
This chapter provides information about selecting and enabling network security.

This chapter is divided into the following sections:

Section Heading Contents

Password Encryption Software encryption of the logon password

Single Sign-On (Windows and
Apple OS X)

How to set up ODBC Driver for Teradata to be able to log
on to a computer/workstation once

Data Encryption Encryption of data transmitted between ODBC Driver for
Teradata and Teradata gateway

Extensible Authentication,
Authorization, and Encryption

Details about the security enabled in Teradata systems

Authentication Mechanisms Information about the authentication available

Determination of
Authentication Mechanism

How the authentication mechanisms are selected

Configuring Authentication
Mechanisms

Where to find information to configure your system

Connecting to Teradata
Database

SQLConnect(), SQLDriverConnect(), and
SQLBrowseConnect()

Enhancing Security Recommended actions for enhancing system security

Constraints Security constraints with this version of the software

Teradata Wallet How to use Teradata Wallet with ODBC Driver

Password Encryption
Logon encryption is used automatically if the server for the application supports the feature.
This is not a user-defined setting at the client level, but the feature can be set as a gateway
option using the GTW control utility.

Network Security

7

ODBC Driver for Teradata® User Guide, Release 16.20 181

For more information, see the Teradata Database documentation.

Single Sign-On (Windows and Apple OS X)
SSO permits a user to log on to a computer or workstation one time and thereafter access
Teradata Database without repeatedly entering a username and password. This feature
saves time and adds an additional level of security, as the username and password are
entered once, and a modern authentication mechanism such as Kerberos sends passwords
across the network.

Enabling SSO
SSO is enabled by checking the Integrated Security option while configuring a Teradata
DSN. If the Integrated Security option is not checked, then Conventional Sign-On (CSO) is
enabled.

SSO can also be enabled at runtime by adding the UseIntegratedSecurity = Y in the
connection string used by the connection APIs. The runtime setting overrides this option
during DSN configuration time.

SSO Usage
When performing SSO, ODBC Driver for Teradata performs reverse DNS lookup and must
succeed. The reverse lookup result must be the FQDN of the Teradata Database node.

Note:

Third Party Sign-Ons are not supported.

There are two SSO scenarios:

• Direct Sign-On: If SSO is enabled and if username and password are not specified in
the ODBC Connection APIs (SQLConnect, SQLBrowseConnect, SQLDriverConnect),
then a Direct Sign-On is considered.

• Third-Party Sign-On: If SSO is enabled and if username and password are specified in
the ODBC Connection APIs (SQLConnect, SQLBrowseConnect, SQLDriverConnect),
then a Third-Party Sign-On is considered.

SSO Error Messages
The following table lists the error messages that ODBC Driver for Teradata can return
regarding SSO usage:

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 182

Error Message Description

SSO request cannot be honored - SSO
not available

An SSO request is received, and the client,
the gateway, or Teradata Database does
not support SSO

Couldn't acquire memory on behalf of
caller

Terasso DLL was unable to acquire needed
memory

Problem in passed parameter(s) Terasso DLL detected error(s) in the passed
parameter(s)

Couldn't load security DLL Terasso DLL was unable to load the
security DLL

Couldn't find security entry point Terasso DLL was unable to find a security
entry point in the security DLL

Couldn't initialize security DLL Terasso DLL could not initialize the security
DLL

SSPI call to EnumerateSecurityPackages
failed

Terasso DLL was unable to enumerate the
available security packages using SSPI. The
reason code (SSPI return code) is included.

Couldn't find a compatible package match
between client and gateway

Terasso DLL was unable to find a security
package compatible with both client and
gateway

SSPI call to AcquireCredentialsHandle
failed

Terasso DLL was unable to acquire a
credentials handle using SSPI. The reason
code (SSPI return code) is included.

SSPI call to InitializeSecurityContext
failed

Terasso DLL was unable to initialize the
security context using SSPI. The reason
code (SSPI return code) is included.

SSPI call to CompleteAuthToken failed Terasso DLL was unable to complete the
authorization token using SSPI. The reason
code (SSPI return code) is included.

SSPI call to FreeBufferContext failed Terasso DLL was unable to free the buffer
context using SSPI. The reason code (SSPI
return code) is included.

Terasso DLL is not in the path Terasso DLL is not present in the system32
directory

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 183

Data Encryption
Data encryption provides secure transmission of data between Teradata clients and the
Teradata gateway. Data encryption is implemented in ODBC Driver for Teradata to address
the security considerations for data transmission between Teradata ODBC clients and the
Teradata gateway. Therefore, Teradata ODBC clients can perform encrypted
communication to and from the Teradata gateway.

ODBC applications can control the encryption of data transmitted between ODBC Driver for
Teradata and the Teradata Gateway. This can be controlled at the connection level or the
statement level.

Connection Level
This connection level setting is applicable to the particular connection handle and, by
default, all statement handles created under it. This option cannot be set at connection level
after the connection to the database has been established.

DSN Option

• On DSN Setup GUI dialog, checking Enable Data Encryption turns on data encryption.
By default, this option is unchecked.

• In odbc.ini the option UseDataEncryption=YES/NO controls this data encryption in
ODBC driver. The default is NO.

SQLDriver/BrowseConnect() Keyword

The connection string keyword-value pair DATAENCRYPTION=YES/NO or
USEDATAENCRYPTION=YES/NO can be used in the connection string of SQLDriver/
BrowseConnect(), to turn data encryption ON or OFF.

Statement Level
Data encryption can also be turned ON or OFF at the statement level. The data encryption
behavior set at the statement level is applicable only for the particular statement handle,
and transactions done for that statement handle only.

At the statement level, data encryption can be turned ON/OFF by setting ODBC Driver for
Teradata defined attribute SQL_ATTR_DATA_ENCRYPTION(13008) to:

• SQL_DATA_ENCRYPTION_ON(1) or

• SQL_DATA_ENCRYPTION_OFF(0)

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 184

This statement-level attribute overrides the connection-level data encryption option. For
example, encryption can be turned ON or OFF with this attribute for a particular statement
handle irrespective of the connection level setting. All other statement handles under the
same connection handle use data encryption as per the connection level setting as the
default.

Backward Compatibility
Existing applications or an application using an existing DSN can have no impact, since the
default for this option is OFF.

Gateway Dependency
The matrix below describes the database dependencies.

If
and if ODBC Data
Encryption=ON and if ODBC Data Encryption=OFF

Teradata
gateway
supports
encryption

All communication between
ODBC Driver for Teradata
and the Teradata gateway
will be encrypted

All communication between ODBC
Driver for Teradata and the Teradata
gateway will be in plain text, except
during logon

Teradata
gateway does
not support
encryption

The connection will not be
established

All communication between ODBC
Driver for Teradata and the Teradata
gateway will be in plain text

Performance Considerations
There will be some impact in overall performance if encryption is turned ON, since processing
is required on both the client and database for data encryption and decryption.

The statement-level option is provided to allow applications to behave “smart” and turn ON
encryption only when required. Therefore, applications that can behave “smart,” (decide
which request and response must be encrypted) should rely on the dynamic statement-level
attribute.

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 185

Extensible Authentication, Authorization, and Encryption

Authentication
Authentication is the indisputable establishment of identities between two mutually
suspicious parties when faced with adversaries with a malicious intent. In other words,
authentication answers a very simple question: Who are you?

In research literature, authentication is defined as a proof of authenticity; it determines if
the source of a message is genuine. Authentication says nothing about capabilities; that is,
it does not determine if a source has the right to access certain resources within the
destination.

User authentication in Teradata Database using ODBC Driver for Teradata uses the
following mechanisms:

• Conventional Teradata Mechanism – consists of a username and a password, which are
validated by the database during logon. This is sometimes referred to as CSO.

• SSO – the system is trusted, and the user is logged on without providing a username
and password. The user's identity, which is obtained through a network or domain login,
is transmitted to Teradata and verified.

SSO is only supported when the server is running Windows and the client running a
Windows or Apple OS X version supporting SSPI. SSO is supported using Kerberos as
the authentication mechanism.

The Extensible User Authentication feature expands these authentication mechanisms to
include LDAP, Teradata-defined, and other user-defined mechanisms. It also provides
support for Kerberos on all platforms that support Kerberos.

Authorization
Authorization consists of providing access to resources based on authenticated user's
privileges within the system. This is controlled by the gateway authorizing access to the
database server, and by the users’ privileges specific to the database (GRANT/REVOKE).

Authorization is outside the scope of ODBC Driver for Teradata.

Confidentiality
Confidentiality (or protection) is related to the network providing a secure transport of
information between the database and ODBC Driver for Teradata. This is accomplished by
encrypting the network information, such as logon and data encryption. The Extensible User
Authentication feature allows different confidentiality services, such as encryption and
decryption to be associated with the authentication mechanisms.

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 186

Integrity
Integrity ensures that information is not tampered with or otherwise altered without proper
authorization while in transit between the client and the gateway. The Extensible User
Authentication feature allows different integrity services–such as message integrity code
calculation and verification–to be associated with the authentication mechanisms.

Authentication Mechanisms
To enable network security, an Authentication Mechanism that corresponds to one of the
mechanisms configured on the gateway by a system administrator must be specified, and
other parameters such as password and username must be passed from the client
application through network security. The following table summarizes the authentication
mechanisms.

Authentication
Mechanism Name

Client/
Servers Description

Teradata 2 TD2 All The Teradata 2 (TD2) mechanism provides
authentication using a Teradata Database
username and password.

The difference between Teradata 1 and
Teradata 2 is that the Teradata 2 encryption
key offers a higher degree of security.

Encryption: When the Teradata 2 (TD2)
mechanism is selected, both logon string and
data are encrypted.

Availability: The Teradata 2 mechanism is
available on all supported client and server
platforms.

Username and Password: A valid Teradata
username and password are always required.

TDNEGO TDNEGO All A security mechanism that automatically
determines the actual mechanism required,
based on policy, without user's involvement.
The actual mechanism is determined by the
TDGSS server configuration and by the
security policy's mechanism restrictions. This
simplifies user logons, because the user does
not need to specify which logon mechanism to

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 187

Authentication
Mechanism Name

Client/
Servers Description

use. It also provides better ease of use and
improved support for applications and tools
which do not support specification of logon
mechanisms.

The Client and Server versions of TDNEGO
automatically negotiate and select an
appropriate TDGSS security mechanism to
use.

Encryption: Depends based on the chosen
mechanism.

Availability: The TDNEGO mechanism is
available on all supported client and server
platforms.

Username and Password: Depends based on
the chosen mechanism.

LDAP LDAP All w/
LDAPv3
Library

When the LDAP authentication mechanism is
employed, the server authenticates by binding
to the LDAP directory using the username and
password.

Encryption: When LDAP is selected, both the
logon string and data are encrypted.

Availability: The LDAP mechanism is available
on all supported client and server platforms,
which provide an LDAPv3 compliant library.

Username and Password: The application
supplies a username, password, and domain or
realm.

When the user has been authenticated, an
implicit logon will proceed using a Teradata
username derived from the directory.

The gateway directory maps the username to
a specific Teradata username or to the
system-defined username EXTUSER.

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 188

Authentication
Mechanism Name

Client/
Servers Description

If the directory maps the username to a
specific Teradata username, then that user
must have previously been granted the logon
with null password privilege.

If the directory maps to EXTUSER, then the
characteristics of the user (role, rights, space,
and so forth) are determined from settings in
the directory.

Kerberos KRB5 Windows

Linux

Apple
OS X

AIX

Solaris
OP

Solaris
SP

Once the identity of the user has been verified
by Kerberos (KRB5), the KRB5 mechanism
implicit logon proceeds using the same
username as the Teradata username.

Encryption: When KRB5 is selected, both the
logon string and data are encrypted.

Availability: The KRB5 mechanism is available
on all supported client and server platforms.

Username, Password, Domain and Realm: The
application supplies a username, password,
and domain or realm.

The username must have previously been
granted the logon with null password privilege.

Single Sign On: The Kerberos (KRB5)
mechanism supports SSO where no username
and password are provided explicitly by the
application, but both are derived from the
security context of the application.

For KRB5 authentication, ODBC Driver for
Teradata performs reverse DNS lookup and
must succeed. The reverse lookup result must
be the FQDN of the Teradata Database node.

JSON Web
Token

JWT All The client’s credentials (username and
password) is authenticated by UDA User
Service. The UDA User Service returns a
JSON Web Token containing encrypted

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 189

Authentication
Mechanism Name

Client/
Servers Description

credentials. The client uses this token to
connect to the database.

The client needs to provide the following two
parameters to the ODBC Driver in the
connection string when using JWT
authentication mechanism:
AUTHENTICATION=JWT;
AuthenticationParameter={token=<JWT
token>};

where <JWT token> is the token obtained from
the UDA User Service.

Encryption: When JWT is selected, both the
logon string and data are encrypted.

Availability: The JWT mechanism is available
on all supported client and server platforms.

Username, Password, Domain and Realm: The
username and password are encrypted in the
JWT token.

Single Sign On: The JWT mechanism supports
SSO as long as the JWT token is not expired.

Other To be
determined

All Users can define other authentication
mechanisms.

Encryption: A user-defined mechanism can
also provide logon and data encryption.

Username and Password: Input to a
mechanism will be the username, password,
and possibly authentication information
specific for the particular mechanism.

Determination of Authentication Mechanism
ODBC Driver for Teradata allows specification of the authentication mechanism in the
connection string and in the ODBC data source configuration.

The authentication mechanism for a connection is determined as follows:

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 190

• If an authentication mechanism is specified in the connection string passed to
SQLDriverConnect() or SQLBrowseConnect(), then that authentication mechanism is
selected. The SQLBrowseConnect() can return a set of authentication mechanisms
supported by both the client and the database to allow the application to make a choice.

• If no mechanism is specified in the connection string or if connecting using
SQLConnect(), then the driver looks in the ODBC data source configuration. If an
authentication mechanism is specified in the DSN settings–in the [Named Data Source]
section or the [Default Data Source] section–then that mechanism is selected. The
specification in the [Named Data Source] section takes precedence over any
specification in the [Default Data Source] section.

• If no mechanism is specified in the connection string or DSN settings, then the selected
authentication mechanism is the authentication mechanism configured for TeraGSS on
the client, provided that it is supported by the gateway.

• Otherwise, the selected mechanism is the default mechanism configured for TDGSS on
the gateway, provided that it is supported by the client.

• Otherwise, the selected mechanism is Teradata 2 if the gateway supports it, or else it
is Teradata 1 if the gateway supports it, or else it is the conventional Teradata
mechanism.

• If the selected authentication mechanism is not supported by the client and the
gateway, then the connection function call (SQLConnect(), SQLDriverConnect(), or
SQLBrowseConnect()) fails and returns SQL_ERROR.

The USEINTEGRATEDSECURITY Connection String Attribute

The USEINTEGRATEDSECURITY or INTEGRATEDSECURITY connection string attribute
and the corresponding setting in the ODBC data source configuration is available for
Windows, Apple OS X, and UNIX OS clients. In Teradata V2R6.0 and later, there is no
authentication method supporting SSO on a UNIX system.

If USEINTEGRATEDSECURITY or INTEGRATEDSECURITY is set and the selected
authentication mechanism does not support SSO, then the connection function call fails.

Configuring Authentication Mechanisms
Authentication Mechanisms can be configured by:

• configuring the odbc.ini file (see Teradata DSN Options.)

• using the ODBC Driver Setup for Teradata dialog box (see Configuring a Data Source.)

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 191

Connecting to Teradata Database
Information on how to connect to Teradata Database using SQLConnect(),
SQLDriverConnect(), and SQLBrowseConnect() selecting the Authentication Mechanisms
can be found in the section ODBC Connection Functions and Dialog.

Username and Password Requirements
The following table shows the Authentication Mechanisms that require and don’t require
usernames and passwords.

Authentication
Mechanism

Mechanism
Parameter

Logon
Encryption

Data
Encryption Username Password

TD2 Never Yes Yes Must Must

KRB5 Optional Yes Yes Never Never

LDAP Must Yes Yes Never Never

JWT Must Yes Yes Never Never

Enhancing Security
Recommendations for enhancing security in an ODBC Driver for Teradata environment
include:

• When using integrated security (SSO) applications, do not pass usernames and
passwords across the wire

• An application should programmatically prevent ODBC tracing from displaying sensitive
information, such as function call parameters

• System administrator can disable ODBC tracing

Constraints

Disconnect After Security Context Expiration
Some security mechanisms, such as Kerberos, provide for the expiration of security
contexts. For example, a Kerberos ticket will expire. If the gateway or the client detects such
an expiration during encryption or decryption, it immediately closes the virtual circuit.

The security context expiration and associated disconnect is limited to Windows clients and
servers using Kerberos authentication.

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 192

If reconnect is enabled in the DSN settings, then the driver attempts to reconnect by
presenting the same credentials that were used to obtain the original connection. The driver
will not try to recover any pending request or provide a status of the request to the
application.

Disconnects might also be caused by security context expiration. The advice to users is to
try to avoid security context expiration by ensuring that the lifetime of the context is
sufficient to allow a given request to complete.

Connection Pooling (Windows and Apple OS X)
Be aware the authentication method and authentication string are not among the criteria
for matching connections in the connection pool, and if they contain information that further
qualifies the authentication information, then incorrect matches can occur.

One such case is in an application server scenario, if the username and password are
identical, but the authentication mechanisms differ, one user can get another's connection,
although this is very unlikely to happen.

TDGSS Support for UTF16

Authentication Parameter

The values for an authentication parameter can be supplied in the following locations:

• DSN

• Connection string

• Dialog box

These values should be in the character set specified by the Windows application code page
setting on Windows, the ODBC application code page setting on a UNIX system, or the
locale setting (LC_TYPE) on Apple OS X.

Teradata Wallet
Teradata Wallet provides access to a client system user’s stored Teradata Database
passwords to the user while protecting these passwords from access by other users of the
same client system.

Each entry in wallet has two parts, a reference string and value (reference string) and real
password. Teradata Wallet returns the password when queried with its associated string to
the user who created it. For detailed information on using Teradata Wallet, see the most
recent version of Security Administration (B035-1100).

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 193

ODBC connect functions can process Teradata Wallet reference strings when used in/as
password or authentication parameter. Reference string must be enclosed in $tdwallet()
token.

Saving a Wallet String in DSN:

• On DSN Setup dialog, enter the Wallet reference string in Teradata Wallet String field.

• In odbc.ini, enclose the Wallet reference string in $tdwallet() token and use it as
password under the DSN in odbc.ini.

Using Wallet String in connect functions:

A wallet reference string can be used in place (or part of) password or authentication
parameter.

Examples
For a connect function call containing the Teradata Wallet reference string:

• SQLConnect(hdbc, "mydsn", SQL_NTS, "myuid", SQL_NTS,"$tdwallet(RefString)",
SQL_NTS);

• SQLDriverConnect(hdbc, NULL, "DSN=mydsn;UID=myid;PWD=$tdwallet(RefString);",
SQL_NTS, szConnStrout, cbConnStrOutMax, &cbConnectStrOutLen, NULL);

• SQLDriverConnect(hdbc, NULL, "DRIVER={Teradata}; DBCNAME=platinum;
AUTHENTICATION=LDAP;AUTHENTICATIONPARAMETER=authcid=$tdwallet(RefString1)
password=$tdwallet(RefString2); ", SQL_NTS, szConnStrout, cbConnStrOutMax,
&cbConnectStrOutLen, NULL);

Password Expiration and Teradata Wallet
On Windows systems, if Teradata Database user password expires, Teradata Database
returns an error message. ODBC driver detects the error and prompts for a new password
(if Quiet Mode is OFF). At this point, the user is not allowed to enter another Teradata Wallet
string, but must type a new password for the actual database user.

Similarly, the value for PWD2 in a connection-string cannot be a Teradata Wallet string.

7: Network Security

ODBC Driver for Teradata® User Guide, Release 16.20 194

Overview
This chapter provides information needed to use ODBC Driver for Teradata to access
Teradata features and extensions to the ODBC standard.

This chapter is divided into the following sections:

Section Heading Contents

Teradata Extensions to the
ODBC Standard

Extensions above and beyond ODBC that ODBC Driver
for Teradata supports for Teradata Database

Stored Procedures A set of control and condition handling statements that
provide a procedural interface to Teradata Database

Auto-Generated Key Retrieval Information about using the auto-generated key
configuration option

SQL Descriptor Fields Information on how ODBC Driver for Teradata uses the
extended statement information configuration option

International Character Set
Support

How to configure the driver for character set support

Atomic UPSERT Support for UPSERT in ODBC Driver for Teradata

ANSI Date and Time
Restrictions

Restrictions that occur for ANSI Date/Time

Period Data Types Information about using Teradata Period data types

Geospatial Types Information about using geospatial and GeoSequence
types

Restrictions Current restrictions for ODBC Driver for Teradata

ANSI Migration Issues Migration issues, including: transaction semantics, data
truncation, duplicate rows, updatable cursors, and case
sensitivity

Configuration Characteristics Access locks and password expiration

SQL Considerations SQL compatibility issues

ODBC Driver for Teradata Application
Development

8

ODBC Driver for Teradata® User Guide, Release 16.20 195

Section Heading Contents

DSN Settings for Third-Party
Applications

Lists third-party DSN settings and their specific
application

Teradata Extensions to the ODBC Standard
This section describes extensions above and beyond ODBC that ODBC Driver for Teradata
supports for Teradata Database. The symbolic names associated with the extensions are
defined in the tdsql.h file in <InstallDir>/include.

Note:

When using driver-defined attributes it is necessary to indicate the type of attribute to
the Driver Manager so it can properly pass the value to or from the driver. This is typically
done by setting the BufferLength argument ODBC API function call getting or setting
the value. For example, BufferLength should be SQL_IS_SMALLINT for a Teradata ODBC
column attribute like SQL_DESC_TD_ODBC_TYPE.

Connection Attributes
The following table lists the connection attributes and their associated values.

Connection Attributes ValuePtr Contents

SQL_ATTR_TDATA_HOST_ID An SQLUINTEGER value in which the logical
host ID for the session is returned.

SQL_ATTR_TDATA_SESSION_NUMBER An SQLUINTEGER value in which the logical
session number is returned.

SQL_ATTR_TDATA_SESSION_CHARSET A null-terminated character string
containing the name of the session
character set is returned.

SQL_ATTR_AGKR An SQLUINTEGER value that determines
the result from requests that insert into
identity columns (INSERT, INSERT ...
SELECT, UPSERT, MERGE-INTO). These
requests can optionally return a result set
containing identity column values (also
known as auto-generated keys) for the
inserted rows.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 196

Connection Attributes ValuePtr Contents

Values supported are as follows:
• SQL_AGKR_NO
• SQL_AGKR_IDENTITY_COLUMN
• SQL_AGKR_WHOLE_ROW

The acronym AGKR is defined as Auto-
Generated Key Retrieval.

This attribute can be set to
SQL_AGKR_NO(0),
SQL_AGKR_IDENTITY_COLUMN(1), or
SQL_AGKR_WHOLE_ROW(2), meaning
respectively that no keys are retrieved, only
the identity column is retrieved, or the whole
row is retrieved by ODBC Driver for Teradata
after an insertion into a table containing an
identity column.

An error is returned if the application tries to
enable the auto-generated key retrieval and
the database does not support the feature.
The error returned is SQL_ERROR with
SQLSTATE HY024 and the message is:
Invalid attribute value.

Statement Attributes
The following table lists the statement attributes and their associated values.

Statement Attribute ValuePtr Contents

SQL_ATTR_AGKR An SQLUINTEGER value that
determines the result from requests that
insert into identity columns (INSERT,
INSERT ... SELECT, UPSERT, MERGE-
INTO). These requests can optionally
return a result set containing identity
column values (also known as auto-
generated keys) for the inserted rows.

Values supported are as follows:
• SQL_AGKR_NO
• SQL_AGKR_IDENTITY_COLUMN

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 197

Statement Attribute ValuePtr Contents

• SQL_AGKR_WHOLE_ROW

This statement level attribute inherits
and overrides the connection level
SQL_ATTR_AGKR setting.

SQL_ATTR_DATA_ENCRYPTION This SQLINTEGER statement attribute
turns ON/OFF data encryption at
statement level. All the transactions
done under a statement handle are
affected.

Values supported are as follows:
• SQL_DATA_ENCRYPTION_ON
• SQL_DATA_ENCRYPTION_OFF

This statement-level attribute overrides
the connection-level data encryption
option. For example, encryption can be
turned ON or OFF with this attribute for
a particular statement handle
regardless of the connection-level
setting. All other statement handles
under the same connection handle use
data encryption as per the default
connection level setting.

SQL_ATTR_TDATAODBC_SBU_ROWCOUNT This attribute is an unsigned bigint
(SQLUBIGINT) and lets 32-bit
applications obtain the row count even if
it is greater than the maximal signed
integer (0x7FFFFFFF).

SQL_ATTR_TRUSTED_SQL SQL_ATTR_TRUSTED_SQL is an
SQLUINTEGER value.

Values supported are as follows:
• SQL_TRUE
• SQL_FALSE

SQL_ATTR_TRUSTED_SQL attribute
can be used to specify if the next SQL
that is executed(either through
SQLExecute or SQLExecDirect) is
trusted or not trusted.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 198

Statement Attribute ValuePtr Contents

Note that the value of
SQL_ATTR_TRUSTED_SQL is
SQL_FALSE by default, and it will be
reset back to SQL_FALSE after any
SQLExecute or SQLExecDirect is made.

The SQL_ATTR_TRUSTED_SQL
attribute is a statement attribute.

When calling SQLSetStmtAttr() or
SQLGetStmtAttr() you must pass in the
value SQL_IS_UINTEGER for the
StringLength or BufferLength argument
respectively.

See also the section on Trusted
Sessions .

SQL Column Attributes
SQLColAttribute supports several Teradata ODBC driver-defined column attributes as the
FieldIdentifier argument. Additionally, using SQL_COLUMN_NAME returns the Teradata TITLE
(if available) instead of the name because this makes most report writers work more
sensibly.

When using SQLColAttribute to obtain driver-defined attribute values the type of the
attribute must be specified in the BufferLength argument. In addition, SQLColAttribute
returns the value through one of two pointers depending on the type: Integer information is
returned in *NumericAttributePtr as a SQLLEN value; all other formats of information are
returned in *CharacterAttributePtr. The pointer not being used for a particular attribute
should be set to NULL in the call. For example, to obtain the value of the attribute
SQL_DESC_TD_ODBC_TYPE:

rc = SQLColAttribute(hstmt, colno, SQL_DESC_TD_ODBC_TYPE, NULL, SQL_IS_SMALLINT,
NULL, &NumAttrPtr);

The pointer used for each of the attributes defined by the Teradata ODBC driver is
indicated in the list below.

Driver-defined FieldIdentifier values are:

• SQL_COLUMN_ACTIVITY_TYPE is an integer that specifies the kind of SQL statement
executed. Value is returned in NumericAttributePtr.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 199

• SQL_COLUMN_COST_ESTIMATE is an integer with a cost estimate for running the
SQL statement. The value returned represents the time estimate in seconds. Value is
returned in NumericAttributePtr.

• SQL_COLUMN_FORMAT returns the Teradata FORMAT clause associated with the
column. Value is returned in CharacterAttributePtr.

• SQL_COLUMN_ACTUAL_NAME is the name associated with the result column. This
FieldIdentifier value is necessary because the meaning of SQL_COLUMN_NAME has
changed. Value is returned in CharacterAttributePtr.

• SQL_COLUMN_CHARACTER_SET is an integer containing the character set of the
column. Value is returned in NumericAttributePtr.

• SQL_COLUMN_EXPORT_WIDTH is an integer containing the database export width
for character columns. Value is returned in NumericAttributePtr.

• SQL_COLUMN_EXPORT_WIDTH_ADJ is an integer containing the database export
width adjustment for character columns. Value is returned in NumericAttributePtr.

• SQL_COLUMN_EXPORT_BYTES is an integer containing the number of bytes that the
database provides for a character column. Value is returned in NumericAttributePtr.

• SQL_DESC_TD_ODBC_TYPE is an SQLSMALLINT that contains the Teradata ODBC-
specific SQL data type code. If multiple database types have the same standard ODBC
SQL type, then the Teradata ODBC-specific SQL data type code can be used to
distinguish between the types. Value is returned in NumericAttributePtr.

For additional information about these attributes, see SQL Descriptor Fields.

When Making SQLColAttribute Calls

For an ANSI application (that is, compiled without UNICODE defined), the Driver Manager
on the UNIX OS will not convert:

• SQLColAttribute calls into SQLColAttributeW calls in ODBC Driver for Teradata

• Output parameters from UTF-8 back to the application code page

Because of this, the output parameters from SQLColAttribute are delivered back to the
ANSI application in the internal character set used by the driver. If the internal character
set is different from the application code page, the application receives data back from
SQLColAttribute in a different character set from what was expected.

This is a problem if, for example, an ANSI application using ISO 8859-1 requests non-ASCII
meta data (such as a column name with Danish characters) and the session character set
is UTF-8. The application gets the column name back in UTF-8. In general, if an ANSI
application uses a Unicode session character set, it gets data back from SQLColAttribute
in UTF-8, regardless of the application code page.

To avoid this problem, use the old SQLColAttributes function (with an 's' at the end).

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 200

SQL Descriptor Fields
The following descriptor fields are exposed by ODBC Driver for Teradata:

• SQL_DESC_TD_ACTIVITY_TYPE is an SQLINTEGER that indicates the type of SQL
statement that was executed.

• SQL_DESC_TD_COST_ESTIMATE is an SQLINTEGER with a cost estimate for running
the SQL statement. The value returned is the time estimate in seconds.

• SQL_DESC_TD_FORMAT is a character string which is the Teradata FORMAT column.

• SQL_DESC_TD_ACTUAL_NAME is a character string containing the column name
associated with the result column.

• SQL_DESC_TD_CHARACTER_SET is an SQLINTEGER that contains the character set
of a given column. Values are:

◦ SQL_TD_CS_UNDEFINED

◦ SQL_TD_CS_LATIN

◦ SQL_TD_CS_UNICODE

◦ SQL_TD_CS_KANJISJIS

◦ SQL_TD_CS_GRAPHIC

◦ SQL_TD_CS_KANJI1

If both the Extended Statement Information and LOB support options are disabled,
the ODBC driver is unable to determine the server character set, resulting in the
return value SQL_TD_CS_UNDEFINED.

• SQL_DESC_TD_EXPORT_WIDTH is an SQLINTEGER that contains the database
export width for character columns, while SQL_DESC_TD_EXPORT_WIDTH_ADJ is an
SQLINTEGER that contains the database export width adjustment for character
columns.

These fields are only valid if the column character set is different from
SQL_TD_CS_UNDEFINED; otherwise they have the value -1, which indicates an
undefined value.

The fields can be used to calculate the number of bytes exported by Teradata Database
for a given character column. The formula is:

<Number of bytes > = <export width * N > + <export width adjustment>

where N is the number of characters in the column.

• SQL_DESC_TD_EXPORT_BYTES is an SQLINTEGER that contains the number of
bytes the database provides for a character column.

• SQL_DESC_TD_ODBC_TYPE is an SQLSMALLINT that contains the Teradata ODBC-
specific SQL data type code. If multiple database types have the same standard ODBC
SQL type, then the Teradata ODBC-specific SQL data type code can be used to
distinguish between the types. For Example, see Number Data Types.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 201

SQLGetTypeInfo
The result set returned by SQLGetTypeInfo has an additional Teradata ODBC-specific
column after the standard columns. The specific column information is listed in the table
below.

Column Name

Column
Number
(ODBC
3.X) Data Type Comments

USER_DATA_TYPE 20 Smallint Always NULL

TDODBC_
DATA_TYPE

21 Smallint
not NULL

Teradata ODBC-specific SQL data
type code used by the ODBC driver.
If multiple database types have the
same standard ODBC SQL type,
then the Teradata ODBC-specific
SQL data type code can be used to
distinguish between the types. For
an example, see Number Data
Types.

SQLColumns
SQLColumns has additional Teradata-specific columns in the result set as listed in the
following table.

Column Name

Column
Number
(ODBC
3.X) Data Type Comments

LABEL 19 Varchar (256)

See (1) at end of
table

Returns the column label
(Teradata title) if one is
provided for the column or
null.

FORMAT 20 Varchar(30) Returns the Teradata format
for a column or null.

CHAR_TYPE 21 Varchar(30) Returns a value describing
character type.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 202

Column Name

Column
Number
(ODBC
3.X) Data Type Comments

Examples include: LATIN,
KANJI1, UNICODE, and so on

TDODBC_DATA_TYPE 22 Smallint not
NULL

Teradata ODBC-specific
SQL data type code used by
the ODBC driver. If multiple
database types have the
same standard ODBC SQL
type, then the Teradata
ODBC-specific SQL data
type code can be used to
distinguish between the
types. For an example, see
Number Data Types.

(1) Varchar(256) if EON enabled, otherwise Varchar(60).

SQLProcedureColumns
The result set returned by SQLProcedureColumns has an additional Teradata ODBC-
specific column after the standard columns. This information is listed in the following table.

Column Name

Column
Number
(ODBC
3.X) Data Type Comments

IS_RESULT_SET_COLUMN 20 Smallint Always NULL

USER_DATA_TYPE 21 Smallint Always NULL

TDODBC_ DATA_TYPE 22 Smallint
not NULL

Teradata ODBC-specific SQL
data type code used by the
ODBC driver. If multiple
database types have the same
standard ODBC SQL type, then
the Teradata ODBC-specific
SQL data type code can be
used to distinguish between the

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 203

Column Name

Column
Number
(ODBC
3.X) Data Type Comments

types. For an example, see
Number Data Types.

Teradata ODBC Driver SQL Types
ODBC Driver for Teradata is limited to Period SQL database types as listed in the following
table.

ODBC SQL Type Identifier Teradata SQL Data Type

Definition in
ODBC Driver
for Teradata

SQL_PERIOD_DATE PERIOD(DATE) An anchored
duration of
dates

SQL_PERIOD_TIME PERIOD(TIME) or
PERIOD(TIME(n))

An anchored
duration of
times. The
precision n is
from 0-6,
default = 6.

SQL_PERIOD_TIME_WITH_TIME_ZONE PERIOD(TIME WITH
TIME ZONE) or
PERIOD(TIME(n) WITH
TIME ZONE)

An anchored
duration of
times, including
time zone. The
precision n is
from 0-6,
default = 6.

SQL_PERIOD_TIMESTAMP PERIOD(TIMESTAMP) or
PERIOD(TIMESTAMP(n))

An anchored
duration of
time stamps.
The precision n
is from 0-6,
default = 6.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 204

ODBC SQL Type Identifier Teradata SQL Data Type

Definition in
ODBC Driver
for Teradata

SQL_PERIOD_TIMESTAMP_WITH_TIME_ZONE PERIOD(TIMESTAMP
WITH TIME ZONE) or
PERIOD(TIMESTAMP(n)
WITH TIME ZONE)

An anchored
duration of
time stamps,
including time
zone. The
precision n is
from 0 to 6,
default = 6.

SQL_TD_FIXED_NUMBER NUMBER(p) or
NUMBER(p, s)

Fixed Number
data types are
mapped to the
standard
SQL_DECIMAL
data type

SQL_TD_FLOATING_NUMBER NUMBER or NUMBER(*)
or NUMBER(*,s)

Floating
Number data
types are
mapped to
SQL_DOUBLE.

SQL_TD_XML XML XML
documents,
and also non-
well-formed
text entities
such as
fragments of
XML
documents.

The ODBC SQL type values are defined in the header file tdsql.h in <InstallDir>/include,
which defines Teradata-specific attributes for ODBC connection, statement, and
descriptor objects.

Stored Procedures
Stored procedures, which are called Persistent Stored Modules in the ANSI SQL-92
specifications, consist of a set of control- and condition-handling statements that provide

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 205

a procedural interface to Teradata Database. These statements are specified using the
Stored Procedure Language (SPL).

A stored procedure can be created from ODBC and some other client utilities, and stored
within the user database on the Teradata Database server. It can be executed using the SQL
CALL statement.

For a complete description of stored procedures and SPL, refer to SQL Stored Procedures
and Embedded SQL (B035-1148).

Stored Procedure Creation from ODBC
Create (define) a stored procedure from ODBC, using the SQL CREATE PROCEDURE or
REPLACE PROCEDURE DDL statement.

The application (ODBC) submits the SPL statements comprising a stored procedure (called
the SPL source text) to the Teradata Database server. The statements are compiled and
saved on the server for subsequent execution.

For the CREATE PROCEDURE or REPLACE PROCEDURE statement syntax and other
information on creating stored procedures, refer to SQL Data Definition Language
(B035-1144).

Checking for Stored Procedure Support
Before creating a stored procedure, the ODBC application must first check whether
Teradata Database supports stored procedures. This is done using the SQLGetInfo API to
retrieve the details shown below. In all these cases, the term procedure means a stored
procedure.

SQLGetInfo API specified with Returns

SQL_PROCEDURES (Y or N) Y = Teradata Database supports
procedures

N = Not supported

SQL_ACCESSIBLE_PROCEDURES (Y or N) Y = User can execute all procedures
returned by SQLProcedures

N = Some of the procedures returned are
unavailable to the user

SQL_PROCEDURE_TERM (PROCEDURE) PROCEDURE in Teradata Database

Print and SPL Options
Stored procedures can specify two storing options relating to the creation-time attributes:

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 206

• Whether to save SPL PRINT statements in the compiled procedure

• Whether to store the SPL source text in Teradata Database

Print Option

The possible values are P and N. The value P indicates that the SPL PRINT statements
specified in the stored procedure body will be saved in the compiled stored procedure. The
value N, which is the default, indicates that the SPL PRINT statements are not to be saved.
Rather, they are preserved in the SPL source text if the SPL source text is stored in
Teradata Database (ProcedureWithSPLSource = Y).

ProcedureWithSPLSource

The possible values are Y and N. The value Y is the default. It indicates that the SPL source
text needs to be stored in Teradata Database. The value N indicates that the SPL source
text should not be stored in the server.

These are options that can be set in ODBC DSN.

SPL Compilation Errors and Warnings
Upon successfully completing the creation of a stored procedure, SQL_SUCCESS is
returned to the client application.

SPL compilation errors and warnings are reported by Teradata Database as part of the
SUCCESS return code only as a direct response to the CREATE PROCEDURE or REPLACE
PROCEDURE request.

The application has to fetch the compilation errors and warnings with SQLFetch, followed
by SQLGetData, until SQLFetch returns SQL_NO_DATA_FOUND.

If compilation errors are found, the stored procedure is not created or replaced.

Structure of Error and Warning Messages
SPL compilation error or warning messages are uniquely identifiable. The error code begins
with SPL, followed by a four-digit number.

This number is followed by an E that indicates an error, or W that indicates a warning. A line
number in parenthesis (L) indicates where in the SPL source text the error or warning was
detected. An appropriate error/warning text follows the code.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 207

Executing Stored Procedures from ODBC
Stored procedures can be executed from any ODBC application using the SQL CALL
statement.

IN, INOUT, or OUT parameters can be submitted with the CALL statement. A CALL
statement must have the same number of call arguments as the called stored procedure
has parameters. For other rules governing the stored procedure parameters, see the CALL
section in SQL Stored Procedures and Embedded SQL (B035-1148).

Rules for Input and Output Arguments
The following rules apply to the input and output arguments submitted with the SQL CALL
statement in ODBC:

• An IN or INOUT argument must be a question mark (? is used as an input placeholder)
or value expression, with the following conditions:

Argument Condition

A value
expression

Must not contain colon-preceded identifiers. It must be a constant
expression.

The value of the expression is treated as the input value for the
corresponding parameter in the called stored procedure.

A NULL value expression can be used to initialize the corresponding
parameter to NULL.

? The value for the corresponding IN or INOUT parameter of the called
procedure must be set using ODBC-specific calls prior to calling the
stored procedure.

• An OUT argument must be an OUT call placeholder or a “?” character. A placeholder
can consist of a Teradata data definition and the Teradata Database-supported
FORMAT, TITLE, and NAMED phrases. If the argument is a “?” character, the value for
the corresponding OUT parameter of the called procedure must be set using ODBC-
specific calls prior to calling the stored procedure.

For the other rules and details governing the CALL statement and usage of stored
procedure parameters, refer to SQL Stored Procedures and Embedded SQL (B035-1148).

Stored Procedures Dynamic Result Sets
Teradata Database has the capability for a stored procedure to return one or more result
sets in addition to the output parameters being returned.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 208

A stored procedure returns a result set to the client by creating a database cursor and not
closing it before returning. A cursor opened by a stored procedure is positioned where the
stored procedure left it off. A result set returned from a stored procedure is presented by
ODBC as an ODBC cursor just like any other result set.

Example
The following example describes the usage of the stored procedure CALL statement in an
ODBC application when the OutputAsResultSet option is set to N:

Assume a stored procedure spODBC has three parameters: p1 of type OUT, p2 of type
INOUT, and p3 of type IN.

The“?” character acts as a placeholder for IN, OUT, and INOUT arguments. The “?”
character placeholder arguments need to be bound with the application local variables
using the SQLBindParameter ODBC SDK API call.

{
char *request = "CALL spODBC(?, ?, ?)";
...
SQLBindParameter(..., 1, SQL_PARAM_OUTPUT, ..., SQLINTEGER,
..., ..., AppVar1, sizeof(AppVar1), ...);
SQLBindParameter(..., 2, SQL_PARAM_INPUT_OUTPUT, ..., SQLINTEGER,
..., ..., AppVar2, sizeof(AppVar2), ...);
SQLBindParameter(..., 3, SQL_PARAM_INPUT,..,SQLINTEGER, ...,...,AppVar3,
sizeof(AppVar3),...);
...
SQLExecDirect(hstmt, request);
...
}

where the following is true:

AppVar1, AppVar2, and AppVar3 are the ODBC application-specific local variables of
INTEGER data type and these contain certain values such as input data while sending the
request and output data while retrieving the results.

The second argument in the SQLBindParameter() is the “?” number ordered sequentially
from left to right, starting at 1.

Retrieving output parameter value:

The values of INOUT and OUT parameters need to be retrieved from the response by
directly printing the local variables (that were bound using SQLBindParameter) after a
SQLFetch API call, or by using the SQLBindCol ODBC SDK API followed by SQLFetch API
call.

SQLBindCol(..., 1, ..., AppVar1, ..., ...);
SQLBindCol(..., 2, ..., AppVar2, ..., ...);

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 209

where the following is true:

the second argument in the SQLBindCol() is the parameter number of result data, ordered
sequentially from left to right, starting at 1.

The values of INOUT and OUT parameters also can be retrieved using SQLFetch ODBC
SDK API followed by SQLGetdata API.

External Stored Procedures
An External Stored Procedure is written in a language other than SQL, and is defined by
the ANSI SQL: 1999 standard. ODBC support of Teradata Database External Stored
Procedures (XSP) is transparent to the ODBC user, and should have no effect on existing
user applications.

The full specification of the syntax, format, and rules for both creating and invoking XSPs
is beyond the scope of this document. See SQL External Routine Programming
(B035-1147) for details on how to create and invoke user-defined functions.

XSPs are similar to UDFs except the CALL statement is used in the same manner as a
stored procedure to invoke an XSP.

Restrictions

The ability to create a XSP function with the XSP source located on the client is restricted.
If you try to create a XSP from source on the client, a message will be returned indicating
XSPs created from source on the client are not supported.

Auto-Generated Key Retrieval
When the Identity Column Teradata Database column attribute is associated with a column,
it causes the database to generate a table-level unique number for the column for every
inserted row. Starting with Teradata Database V2R6.2, requests that insert into identity
columns (INSERT, INSERT ... SELECT, UPSERT, MERGE-INTO) can optionally return a result
set containing identity column values (also known as auto-generated keys) for the inserted
rows.

An application can specify that auto-generated keys are to be returned from requests that
insert into identity columns in the following ways:

• Using the Return Generated Keys configuration option on DSN setup dialog or the
ReturnGeneratedKeys option in odbc.ini file.

• Using the ReturnGeneratedKeys connection string keyword in a call to
SQLDriverConnect or SQLBrowseConnect

• Using the SQL_ATTR_AGKR connection attribute in a call to SQLSetConnectAttr

• Using the SQL_ATTR_AGKR statement attribute in a call to SQLSetStmtAttr

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 210

In all cases, the application can specify that only the identity column is returned for the
inserted rows, that all columns of the inserted rows are returned, or that no inserted rows are
returned (the default behavior).

When auto-generated key retrieval is enabled, a request that inserts into tables containing
identity columns returns two results: a row count with the number of inserted rows and a
result set containing the auto-generated keys as a single column or the complete rows
inserted, depending on the configuration. The insert request becomes similar to a macro that
first inserts and then selects the identity column or all columns of the rows just inserted. The
application should call SQLMoreResults to position to the second result and call
SQLBindCol/SQLFetch or SQLFetch/SQLGetData to retrieve the result set containing the
generated keys.

SQL Descriptor Fields
Teradata Database Versions from V2R6.2 and up support improved meta data for
parameters used in SQL requests and for columns in result sets. The improved meta data is
collectively known as Extended Statement Information. ODBC Driver for Teradata uses the
extended statement information if it is supported by the database, but the use of extended
statement information in ODBC can also be explicitly disabled through a configuration option
(Enable Extended Statement Information check box in the DSN setup dialog, and
EnableExtendedStmtInfo in the odbc.ini file).

When extended statement information is available in ODBC Driver for Teradata, a
conforming application should not experience any differences. The application can do the
following:

• Discover that SQLDescribeParam is supported and start using it

• Receive SQL_UNKNOWN_TYPE when calling SQLGetDescField for some parameters in
certain SQL expressions where the database cannot determine the type

• Find that some descriptor fields that were not set are now set or have different values

• Discover that information about datetime types and intervals is now more precise

The different values of some of the descriptor fields in ODBC Driver for Teradata when
extended statement information is available might affect applications that rely on the old
behavior. If necessary, such applications can obtain the old behavior by disabling extended
statement information in the ODBC configuration.

The following sections describe differences in the values of descriptor fields when extended
statement information is available.

SQL_DESC_UNSIGNED is set regardless of FORMAT
The SQL_DESC_UNSIGNED ODBC descriptor record field is set to SQL_TRUE if the column
type is unsigned or non-numeric. SQL_DESC_UNSIGNED is set to SQL_FALSE if the
column type is signed.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 211

An application can ask for the signed or unsigned characteristics of a column in a result set
by using SQL_DESC_UNSIGNED in a call to SQLColAttribute or SQLGetDescField. An
application can ask for the signed or unsigned characteristics of a parameter marker
associated with a prepared SQL statement by using SQL_DESC_UNSIGNED in a call to
SQLGetDescField.

When extended statement information is not available, ODBC Driver for Teradata
determines the signed or unsigned characteristics by looking at the database type and the
display format string.

If the format string includes a sign character, then the column or parameter is classified as
signed and SQL_DESC_UNSIGNED is set to SQL_FALSE. If the format string does not
include a sign character, then SQL_DESC_UNSIGNED is set to SQL_TRUE. For example, if
the column type is INTEGER and the format ‘ZZZ9’, then SQL_DESC_UNSIGNED is
SQL_TRUE, but if the format is ‘+ZZZ9’, then the SQL_DESC_UNSIGNED is SQL_FALSE.

In ODBC Driver for Teradata with extended statement information available, the driver as
default obtains the signed or unsigned characteristics from the extended statement meta
data provided by the database. For example, if the column type is INTEGER, then it is always
signed and SQL_DESC_UNSIGNED is SQL_FALSE, regardless of any format string.

The behavior in ODBC Driver for Teradata with extended statement information available
is considered more correct because it reflects the database meta data more closely.

SQL_DESC_BASE_COLUMN_NAME when there is an alias
When extended statement information is not available, the value of the
SQL_DESC_BASE_COLUMN_NAME descriptor field will always be the same as the value
of the SQL_DESC_NAME descriptor field. The value is the alias, if there is one; otherwise,
the column name, if there is one, or the empty string, if there is no alias or column name.

When extended statement information is available, the database returns the alias and base
column name as separate meta data items and ODBC is therefore able to distinguish
between and SQL_DESC_NAME. The values will differ if there is an alias.

Consider, for example:

SELECT k AS kalias FROM SomeTable;

With extended statement information available, ODBC Driver for Teradata will return “k” for
SQL_DESC_BASE_COLUMN_NAME and “kalias” for SQL_DESC_NAME.

SQL_DESC_CASE_SENSITIVE
The SQL_DESC_CASE_SENSITIVE descriptor record field contains SQL_TRUE if the
column or parameter is treated as case-sensitive for collations and comparisons or if it is
a noncharacter column.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 212

When extended statement information is not available, the value of the
SQL_DESC_CASE_SENSITIVE descriptor field will always be SQL_TRUE for a character
column, regardless of the column definition (“CASESPECIFIC” or “NOT CASESPECIFIC”).

When extended statement information is available, the value of the
SQL_DESC_CASE_SENSITIVE descriptor field matches the column definition; for example,
the value is SQL_TRUE if the column is defined as “CASESPECIFIC” and the value is
SQL_FALSE if the column is defined as “NOT CASESPECIFIC”.

SQL_DESC_TD_UDT_INDICATOR
The SQL_DESC_TD_UDT_INDICATOR descriptor record field contains UDT Indicator of the
column. When the column is defined as UDT, then the SQL_DESC_TD_UDT_INDICATOR
describes type of the UDT defined. When the column is defined as a non-UDT, then the
SQL_DESC_TD_UDT_INDICATOR will always have a value zero. The value of
SQL_DESC_TD_UDT_INDICATOR descriptor field are exposed in the header file tdsql.h.

When extended statement information is not available, the value of the
SQL_DESC_TD_UDT_INDICATOR descriptor field will always be zero.

With extended statement information available, the value of the
SQL_DESC_TD_UDT_INDICATOR descriptor field will have one of the UDT Indicator values
from the following table based on the column definition.

UDT Indicator Value Definition Description

1 SQL_TD_UDT_STRUCTURED Structured UDT

2 SQL_TD_UDT_DISTINCT Distinct UDT

3 SQL_TD_UDT_INTERNAL Internal UDT

0 SQL_TD_UDT_BASE For all other data types

SQL_DESC_TD_UDT_NAME
The SQL_DESC_TD_UDT_NAME descriptor record field contains the Fully Qualified Type
Name of the UDT column.

When extended statement information is not available, the value of the
SQL_DESC_TD_UDT_NAME descriptor field will always be empty string.

With extended statement information available, the value of the
SQL_DESC_TD_UDT_NAME descriptor field will have Fully Qualified Type Name based on
the column definition.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 213

International Character Set Support

Introduction
ODBC Driver for Teradata supports the Unicode Data Dictionary. It is a Unicode Driver that
seamlessly supports both Unicode and ANSI applications.

ODBC Driver for Teradata communicates with Teradata Database using the following
supported session character sets:

• Unicode UTF8 and UTF16 session

• Double-byte Chinese and Korean

• EUC and SJIS double-byte Kanji and single-byte Katakana

• ASCII and Latin session

• Single byte Thai, Cyrillic, Hebrew, Turkish and Vietnam session

The following table contains a complete list of supported session character sets.

Supported Session Character Sets

ASCII

UTF8

UTF16

LATIN1252_0A

LATIN9_0A

LATIN1_0A

LATIN1252_3A0

KANJISJIS_0S

KANJIEUC_0U

KANJIEBCDIC5035_0I

KANJI932_1S0

TCHBIG5_1R0

SCHGB2312_1T0

SCHINESE936_6R0

TCHINESE950_8R0

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 214

Supported Session Character Sets

HANGULKSC5601_2R4

HANGUL949_7R0

ARABIC1256_6A0

CYRILLIC1251_2A0

HEBREW1255_5A0

LATIN1250_1A0

LATIN1254_7A0

LATIN1258_8A0

THAI874_4A0

Unicode ODBC API plus Unicode session character sets combine to provide full support for
Unicode applications. Unicode data flows from a Unicode ODBC application to the driver
and onto Teradata Database without any loss of data due to conversions.

ODBC C Character Data Types
ODBC Driver for Teradata conforms to ODBC 3.52 specifications and supports
SQL_C_CHAR and SQL_C_WCHAR C data types as listed below:

ODBC C Data Type Windows Platform UNIX Platforms Apple OS X

SQL_C_CHAR Character string
encoded in the code
page of the
application

(Windows
application code
page)

Character string
encoded in the code
page of the
application

(ODBC application
code page)

Character string
encoded in the code
page of the
application (current
locale LC_TYPE
category)

SQL_C_WCHAR Unicode (UTF16)
character string

Unicode (UTF8)
character string

Unicode (UTF32)
character string

An ODBC application can pass and retrieve character data encoded in the application code
page (SQL_C_CHAR) or Unicode (SQL_C_WCHAR) character data to or from the ODBC
driver. ODBC Driver for Teradata converts the character string to or from the session
character set when required; see Conversion and Error Handling for additional information.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 215

ODBC SQL Character Data Types
The ODBC specification supports six SQL character data types while Teradata supports
three character data types. The following table shows how ODBC Driver for Teradata maps
the Teradata character data type to ODBC SQL data types.

ODBC SQL Character Data Types

Teradata Data
Type

ODBC SQL Data Type

Non-Unicode Session Character
Set

ODBC SQL Data Type

Unicode Session Character Set

CHAR SQL_CHAR SQL_WCHAR

VARCHAR SQL_VARCHAR SQL_WVARCHAR

CLOB SQL_LONGVARCHAR SQL_WLONGVARCHAR

For additional information, see “Application Model With Single Form-of-Use” in
International Character Set Support (B035-1125).

Conversion and Error Handling
This section describes how ODBC Driver for Teradata does the following:

• Converts Parameter and Result set data to or from C data types to or from session
character set

• Converts SQL-Text to session character set

• Handles conversion errors

Parameter and Result Set Data

The following table lists parameter and result set data.

Note:

The new driver strictly adheres to the exact conversion from the application character
set to the session character set regardless of unicode vs non-unicode. The following
table shows the conversion for Parameter, and Result Set is the opposite.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 216

Session
Character Set
ASCII or User-
defined

Session Character
Set

Non-Unicode
Session Character Set
Unicode

SQL_C_CHAR No Conversion Convert from
Application Code
Page to Unicode

Note:

See Application
Code Page.

Convert from
Application Code Page
to Unicode

Note:

See Application Code
Page.

SQL_C_WCHAR Convert from
Application Code
Page to Platform
Unicode
representation

Convert from Session
Character Set to the
Platform Unicode
representation (UTF8
on the UNIX OS,
UTF32 on Apple OS
X, and UTF16 on
Windows)

No Conversion when
session character set
matches the Platform
Unicode representation
(UTF8 on the UNIX OS,
and UTF16 on
Windows. On Apple OS
X, convert from session
character set to UTF32
Unicode
representation.

Error Handling

Not all characters can be converted between Unicode and other non-Unicode code pages.
Therefore, some characters are converted into error characters. For additional information
on error characters, see Chapter 8 in International Character Set Support (B035-1125).
In most cases, conversion errors result in the following Teradata Database errors:

• 6706 – The string contains an untranslatable character

• 6705 – An illegally formed character string was encountered during translation

In some cases, the “?” is used as the error character. In these cases, Teradata Database
cannot detect conversion errors. Therefore, SQL-Text and character strings should match
the session character set repertoire to avoid conversion errors.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 217

ANSI ODBC Applications
In the following section, assume that the ANSI application is limited to SQL_C_CHAR data
binding and a non-Unicode session character set is used. The following figure depicts the
programming model for ODBC Driver for Teradata:

1. SQL-Text and SQL_C_CHAR character data flows between the ODBC Application and
the ODBC Driver Manager

2. The ODBC Driver Manager:

• Converts the SQL-Text to Unicode and passes it to the ODBC Driver

• Does not convert the SQL_C_CHAR data and passes it as is to the ODBC Driver

3. The ODBC Driver for Teradata Database:

• Converts the SQL-Text from Unicode to Session Character Set

• Does not convert the SQL_C_CHAR data and passes it as is to Teradata Database

Unicode ODBC Applications
In this subsection, assume that the Unicode application is limited to SQL_C_WCHAR data
binding and a Unicode session character set is used.

The following figure depicts the programming model for Unicode applications accessing
ODBC Driver for Teradata.

1. SQL-Text and SQL_C_WCHAR character data flows between the Unicode ODBC
application and the ODBC Driver Manager

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 218

2. The ODBC Driver Manager does not convert SQL-Text or the character strings and
passes them as is to the ODBC driver

3. ODBC Driver for Teradata does not convert SQL-Text or character strings and passes
them as is to Teradata Database

Application Considerations
The following subsections discuss the use of Unicode in applications accessing ODBC Driver
for Teradata.

UNICODE Symbol Definition

If an application is compiled with the UNICODE symbol defined, then calls to ODBC API
functions are mapped to their corresponding W-functions through macro substitution in
the sqlucode.h header file. For example, a call to SQLExecDirect is mapped to a call to
SQLExecDirectW.

If the UNICODE symbol is undefined, then the application uses Unicode string arguments
by explicitly calling W-functions.

Applications can be written to be compiled as either Unicode or ANSI applications. In that
case, the character data type can be declared as SQL_C_TCHAR. This is done using a
macro that inserts SQL_C_WCHAR if the application is compiled as a Unicode application
(with UNICODE symbol defined), or inserts SQL_C_CHAR if compiled as an ANSI
application. The application programmer must be careful of functions taking SQLPOINTER
as an argument. In addition, the size of the length argument changes for string data types,
depending on whether the application is ANSI or Unicode.

On Windows, definitions in the tchar.h include file are useful for applications built as
Unicode or ANSI. Unicode definitions in tchar.h are controlled by the _UNICODE #define
function (preceded by an underscore).

See the MSDN ODBC programmer's manual for additional information.

Unicode Character Types

Windows

On Microsoft Windows, the Unicode character type is a distinct C/C++ type called
wchar_t. Strings of this type use UTF16 Unicode encoding, and many string support
functions can be applied to them.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 219

UNIX/Linux

On a UNIX system, there is no distinct C/C++ type for UTF8 encoded Unicode strings.
Strings of type char are commonly used to represent character strings encoded in UTF8,
but care must be used when applying string manipulation functions, specifically with
respect to lengths of strings that can be measured in bytes and characters.

Most UNIX system implementations also have a type wchar_t, but it is usually a 32-bit
type used for fixed length character encodings such as UTF32, and not UTF8. For such
systems, another approach is to use wchar_t internally within the application, and then
convert strings of that type to UTF8 and back whenever they are passed to external
interfaces such as ODBC Driver for Teradata.

Whenever possible, the SQLWCHAR ODBC character type should be used for Unicode
strings instead of the wchar_t type, since SQLWCHAR and wchar_t are not the same on
all operating systems.

On a UNIX system, Unicode encoding for strings and data passed to ODBC Driver for
Teradata can be changed from the default UTF8 to UTF16 as follows:

1. Define SQLWCHARSHORT. For example, add the following to your code:

#define SQLWCHARSHORT

Note:

SQLCHARSHORT changes definitions of SQL_WCHAR from char* to short * and
must be defined before ODBC include files are specified.

2. Set the SQL_ATTR_APP_UNICODE_TYPE environment attribute to
SQL_DD_CP_UTF16. For example, add the following to your code:

// Specify the unicode encoding for the application. SQL calls and
// data are both affected. No other environment variables or
// connection options (including DSN options) are needed.
rc = SQLSetEnvAttr
 (m_henv, SQL_ATTR_APP_UNICODE_TYPE,
 (void *) SQL_DD_CP_UTF16, SQL_IS_INTEGER);

Apple OS X

On Apple OS X, the wchar_t type is available, and is a 32-bit type. Since ODBC Driver
Manager expects Unicode strings in UTF-32 encoding, the wchar_t type can be used to
represent Unicode strings.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 220

Length Arguments for Unicode ODBC Functions

Many ODBC interface functions expect string arguments that specify the length of
character string input and output values. While some functions expect Unicode arguments
to specify such lengths in bytes, others expect lengths to be specified as character counts.
This varies by platform and Unicode encoding.

• UTF16/UTF32 Encoded Unicode Strings: The following paragraph from the Unicode
section of Chapter 17, “Programming Considerations,” of Microsoft ODBC 3.0
Programmer's Reference states the ultimate rule regarding the specification of length
arguments in Unicode functions:

“Unicode functions that always return or take strings or length arguments are passed
as count of-characters. For functions that return length information for server data,
the display size and precision are described in number of characters. When a length
(transfer size of the data) could refer to string or non-string data, the length is
described in octet lengths. For example, SQLGetInfoW will still take the length as
count-of-bytes, but SQLExecDirectW will use count-of-characters.”

• UTF8 Encoded Unicode Strings on a UNIX System: UTF8 is the default Unicode
encoding for ODBC applications running on a UNIX system. All string length arguments
to ODBC interface functions should be specified as count of bytes.

User-Defined Session Character Set Support
ODBC Driver for Teradata uses the application code page for Unicode to user-defined
session character set conversions unless a translation DLL is specified. A user-defined
session character set can be defined using the setup program. The following figure provides
an example, using the ODBC Driver Setup for Teradata Database dialog box. A character
set called userdefined is set.

Note:

During logon, the session character set does not read userdefined. This is correct
because translation DLLs are loaded after logon. For instance, ASCII is used to logon
to the database and then the translation DLL is loaded and used for conversions
between Unicode and the session character set.

Translation DLLs
A translation library is a dynamic linked library that contains functions for translating all the
data flowing between the Teradata server and the driver. Translation DLLs are used if local
character sets are not supported by the ODBC Driver or Teradata.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 221

After a translation DLL has been specified, the driver loads it and calls it to translate all
data flowing between the application and data source.

This includes the following:

• All SQL statements

• Character parameters being sent to the data source

• All character result set data

• Character meta data such as table and column names

• Error messages retrieved from the data source

Connection data is not translated, because the translation DLL is not loaded until after the
application has connected to the data source.

Refer to the ODBC Programmer's Reference for information on how to write a translation
DLL.

For UNIX OS clients, use the CharacterSet keyword instead.

To define the translation DLL name and option, use the Teradata ODBC Driver Advanced
Options dialog box. The example in the figure that follows shows that user uses
Translation.dll as the translator.

For UNIX OS clients, use CharacterSet TransitionDLL, and TranslationOption instead. The
Translation DLL path cannot be more than 255 characters. Translation Option is used by
translation DLL and optional. The driver will convert it to a 32-bit integer and pass it to the
translation DLL. Translation DLL can be used for a supported session character set but it
is strongly discouraged.

For an example of translation DLL, refer to sample translator that comes with the Driver
Manager.

Application Code Page
The ODBC Driver Manager handles the conversion needed when an ANSI application calls
the Unicode ODBC driver.

• On a UNIX system, the Driver Manager uses the ODBC application code page setting
in the DSN or connection string when converting an ANSI string argument passed to
the ANSI ODBC function calls to or from Unicode. An example of this conversion is when
an ANSI application calls SQLExecDirect.

• On a UNIX system, ODBC Driver for Teradata uses the ODBC application code page
specified in the DSN or connection string for conversions to and from Unicode. These
conversions are done for data that is bound with the SQL_C_CHAR type.

• On Windows, the Driver Manager uses the Windows application code page when
converting to or from Unicode.

• On Apple OS X, the ODBC driver manager uses the current locale LC_TYPE category
when converting to or from Unicode.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 222

ODBC Application Code Page Values (Linux/UNIX and Apple OS X)

ODBC application code page values can be set either in the DSN or the connection string.
Any setting in the connection string takes precedence over settings in the DSN.

On Apple OS X, only the following code page value is supported due to a restriction
imposed by iODBC Driver Manager:

ODBC Application Code Page Value Description

4 ISO 8859-1 Latin-1

The following table lists ODBC application code page values used in ODBC Driver for
Teradata on a Linux/UNIX system.

ODBC Application Code Page
Values Description

3 ISO 646 7-bit ASCII

4 ISO 8859-1 Latin-1

2009 CP 850 - European code page

2011 CP 437 - US code page

2004 HP ROMANS

2027 Standard Macintosh Roman

17 Shift-JIS proper

18 EUC-JIS encoding

2025 EUC-CNS encoding

2024 Microsoft CP 932 = Win32J-DBCS

5 ISO 8859-2 Latin-2 Eastern Europe

8 ISO 8859-5 Latin/Cyrillic

9 ISO 8859-6 Latin/Arabic

10 ISO 8859-7 Latin/Greek

11 ISO 8859-8 Latin/Hebrew

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 223

ODBC Application Code Page
Values Description

12 ISO 8859-9 Latin-5 Turkish

13 ISO 8859-10 Latin-6 Nordic

6 ISO 8859-3 Latin/Esperanto/Galician

7 ISO 8859-4 Latin/Estonian/Latvian

16 JIS_Encoding

30 ISO_646_IRV

37 ISO_2022_KR

38 EUC_KR

39 ISO_2022_IP

40 ISO_2022_IP_2

57 GB_2312_80

104 ISO_2022_CN

105 ISO_2022_CN_EXT

109 ISO 8859-13

110 ISO 8859-14

111 ISO 8859-15 Latin-9 Western Europe with Euro sign

2084 KOI8 - Cyrillic

2259 TIS 620 - Thai standard

2026 Big5 Traditional Chinese

2028 IBM EBCDIC (8859-1 convertible)

2030 IBM EBCDIC Germany/Austria

2033 IBM EBCDIC Denmark/Norway

2034 IBM EBCDIC Finland/Sweden

2035 IBM280

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 224

ODBC Application Code Page
Values Description

2037 IBM EBCDIC Spain/Latin America

2038 IBM EBCDIC U.K.

2039 IBM EBCDIC Katakana for DB2

2040 IBM EBCDIC France

2041 IBM EBCDIC Arabic bilingual

2043 IBM424

2044 IBM EBCDIC Western Europe

2045 IBM851

2010 PC Eastern Europe

2046 PC Cyrillic

2047 PC Turkish

2048 PC Portuguese

2049 PC Icelandic

2050 PC Canadian French

2051 PC Arabic

2052 PC Nordic

2054 PC Greek

2055 IBM EBCDIC Eastern Europe

111 Microsoft Thai SB code page

17 Japanese IBM J-DBCS: CP 897 + CP 301

113 PC Simplified Chinese

36 PC (MS) Korean, similar to EUC-KSC

2026 PC (MS) Traditional Chinese (~Big5)

18 EUC-JIS

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 225

ODBC Application Code Page
Values Description

3063 IBM EBCDIC Turkish

2056 IBM871

2062 IBM918

2063 IBM1026

2085 HZ_GB_2312

2086 IBM866

2087 IBM775

2089 IBM00858

2091 IBM01140

2092 IBM01141

2093 IBM01142

2094 IBM01143

2095 IBM01144

2096 IBM01145

2097 IBM01146

2098 IBM01147

2099 IBM01148

2100 IBM01149

2102 z/OS Open Edition

2250 MS Windows 3.1 Eastern European

2251 MS Windows 3.1 Cyrillic

2252 MS Windows 3.1 US (ANSI)

2253 MS Windows 3.1 Greek

2254 MS Windows 3.1 Turkish

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 226

ODBC Application Code Page
Values Description

2255 MS Windows Hebrew

2256 MS Windows Arabic

2257 MS Windows Baltic

2258 MS Windows Vietnamese

UTF8 Pass Through Functionality
Some existing Unicode applications on Windows have been using the UTF8 encoding of
Unicode to be able to pass Unicode data through to the Database using ODBC ANSI
function calls. These applications utilize the UTF8 session character set. They will face the
following issues with the Unicode driver:

• Supplying Latin or Kanji object names through the ANSI API will fail because the Driver
Manager cannot translate to UTF-16 using the application code page as the string will
contain invalid characters. For example, working on a Japanese PC, the Driver Manager
will attempt to convert UTF8 characters thinking it is SJIS.

• Supplying Latin or Kanji data in the SQL request, for example: “INTO T values …” will fail
because the Driver Manager cannot translate to UTF16 using the application code
page.

• Character data of type SQL_C_CHAR. The new driver will convert data to and from the
UTF-8 session character set using the applications code page. This will fail for non-
ASCII characters.

Therefore, supplying and retrieving UTF8 data using SQL_C_CHAR data binding is not
supported.

Restrictions
• ODBC Driver for Teradata does not support EBCDIC session character sets for the

Unicode ODBC driver. Note that KANJIEBCDIC5035_0I is supported on Windows. See
Session Character Sets and Translation DLLs for more information.

• Retrieving fixed character fields (for example, C01 CHAR(10)) utilizing the UTF8 session
character set can result in padded strings due to the database export factor utilized
when translating characters to the session character set. Use UTF16 session character
set which contains an export factor of 2 for all characters, or utilize varchar() variables
instead of char().

• Kanji User ID and Password are not supported on an English-enabled client machine.
Kanji User ID and passwords can be used on English language PCs if the database

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 227

release is 12 or higher, the database is Kanji-enabled, and the session character set is
UTF16 or UTF8. This is a Unicode Data Dictionary enhancement.

• Characters not found during translations will be substituted by an error character. For
example, given a session on a Japanese Windows machine, the string “abecedný” would
convert the “ý” to “0xfcfc”, indicating a conversion error from the ODBC code converter.
The character, “ý”, is not a valid SJIS character. See the “Conversion and Error
Handling” chapter in International Character Set Support (B035-1125).

• ANSI applications requesting column names or other meta data containing non-ASCII
characters through the SQLColAttribute method, using a Unicode session character
set, will retrieve the non-ASCII characters in UTF8 encoding (not encoded by the
application code page). ANSI applications using non-Unicode sessions will not
encounter this problem. It could be a problem if a customer is in the process of migrating
applications to Unicode having some ANSI and some Unicode applications, all running
over Unicode sessions. A workaround is to use the old SQLColAttributes convention ('s'
at the end).

• Calling SQLColumns against a table with a 2 GB CLOB column can cause an error
because the value in the BUFFER_LENGTH column overflows when bound to unsigned
integer types. The maximum CLOB size recommended for use with UTF8 (export factor
2) and UTF16 session character sets is 1 GB.

Atomic UPSERT
UPSERT is a composite of UPDATE and INSERT operations, applied to a single row in a
table, so that, if the UPDATE fails because the target row does not exist, the INSERT is
automatically executed.

An UPSERT-like feature was formerly supported by load utilities such as Teradata TPump
and Teradata MultiLoad, but the implementation was a two-pass one (first UPDATE will be
executed; if it fails, then INSERT will be executed). For better performance of the UPSERT-
like queries, the Atomic UPSERT feature was implemented on the server.

To support UPSERT SQL for Teradata Database, ODBC Driver for Teradata was enhanced
to support the feature in the Teradata Tools and Utilities. UPSERT allows all client
applications to use this UPSERT functionality as a single query (or one-pass strategy), which
has better performance when compared to Teradata TPump and Teradata MultiLoad batch
logic.

While establishing a connection to Teradata Database, ODBC Driver for Teradata
determines whether the UPSERT feature is supported by Teradata Database. If the
database does not support the UPSERT feature, any UPSERT statements submitted by the
application return the following general error to the application:

("UPDATE..ELSE..INSERT (UPSERT) is not supported by Database").

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 228

Syntax
The syntax for Atomic UPSERT is straightforward and self-explanatory, consisting of an
UPDATE statement and an INSERT statement separated by an ELSE keyword, as follows:

UPDATE <update-operands> ELSE INSERT <insert-operands>

The <update-operands> and <insert-operands> are operands for regular UPDATE and
INSERT SQL statements, respectively.

UPDATE Sales SET ItemCount = ItemCount + 1 WHERE (ItemNbr = 20 AND SaleDate =
'05/30/2000') ELSE INSERT INTO Sales (20, '05/30/2000', 1);

ANSI Date and Time Restrictions
Some of the restrictions for using ODBC Driver for Teradata include:

• The SET SESSION DateForm command is not allowed in a multi-statement request

• The time zone value for TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE must
be converted to an ODBC C character type. The standard ODBC C time and timestamp
types do not have a time zone component

• (Windows) Since the ODBC driver does not support PMPC commands, asynchronous
niching (priority of execution) of a query is not supported, but self-niching queries are
supported.

• The Teradata TIME type allows fractional seconds, but there is limited support for
fractional seconds of TIME in standard ODBC. As an extension to standard ODBC, the
Teradata ODBC Driver preserves fractional seconds in conversions between character
ODBC C data types and SQL_TYPE_TIME.

ANSI DateTime Feature
The Teradata ANSI DateTime feature, including definitions, usage, and limitations, is
described in Teradata Database documentation, including information on how ODBC Driver
for Teradata supports this feature, and how to use DATEs, TIMEs, and TIMESTAMPs.

Change Your DSN Configuration

You can call the SQLDriverConnect or the SQLBrowseConnect API function, and use the
new DATETIMEFORMAT = option. The DateTimeFormat is only valid for the duration of
the new session. You can also use one of the following SQL statements to permanently set
it:

SET SESSION DATEFORM = ANSIDATE
SET SESSION DATEFORM = INTEGERDATE

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 229

The DateTimeFormat is only valid for the duration of the session. In addition, the SET
SESSION DATEFORM SQL statement must not be included in a multi-statement request.
Finally, this method only sets the DATE format.

DateTimeFormat Compatibility and Precision

If you set the session DateTimeFormat to old-style and your tables were created with old-
style DATEs, TIMEs, and TIMESTAMPs, you will get the same results. The integer time
format is not recommended, because it has been deprecated. For more information, see
Integer Time.

A more interesting case is when you want to set the session DateTimeFormat to old-style,
but the tables were created with ANSI DATEs, TIMEs, and TIMESTAMPs.

When the session DateTimeFormat is ANSI, the following SQL statement creates a column
of type ANSI TIME with a fractional second precision of 6 (hh:mm:ss.ffffff). This is because
the Teradata default fractional second precision is 6, not 0.

 CREATE TABLE tablename (c1 TIME)

TIME and TIMESTAMP precision between these data types, in fractional seconds, is
depicted in the following table.

Time/Timestamp Type Precision Limits

Teradata ANSI TIME up to 15 characters (hh:mm:ss.ffffff)

Teradata ANSI TIMESTAMP up to 26 characters (yyyy-mm-dd hh:mm:ss.ffffff)

If requested to fetch a character string from Teradata and convert it to a TIMESTAMP,
the driver will truncate the TIMESTAMP at 26 characters, and generate a warning.
Similarly, when fetching a character string and converting it to a TIME, the driver will
truncate the TIME at 15 characters and generate a warning. If requested to fetch a
TIMESTAMP from Teradata and convert it to a TIME, the driver returns
SQL_SUCCESS_WITH_INFO and 01S07 as required by the ODBC specification when
converting from SQL_TIMESTAMP to SQL_C_TIME. The driver truncates the fraction
silently only when fetching a character string containing a fraction field and converting it
to SQL_C_TIME (converting from SQL_CHAR to SQL_C_TIME) with the DateTimeFormat
DSN option for Time set to Integer. Otherwise, the truncation is not silent and the driver
returns SQL_SUCCESS_WITH_INFO and 01S07 sqlstate, as required by the ODBC
specification.

If the user application calls SQLBindParameter, and passes a pointer to a buffer that
contains (or will later contain) an oversize character string to be used as a TIME or
TIMESTAMP, truncation of the fractional seconds can occur silently.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 230

If the user application calls SQLBindParameter, and the session DateTimeFormat is old
style, it is not allowed to pass pointers to buffers that contain (or will later contain)
Teradata ANSI DATEs, TIMEs, or TIMESTAMPs with prefixes (for example, TIME
'14:25:00'). ANSI DATEs, TIMEs, and TIMESTAMPs that do not have these prefixes will
work. ODBC syntax DATE, TIME, or TIMESTAMP literals will always work, regardless of the
DateTimeFormat value.

You cannot do integer arithmetic on ANSI TIMEs and TIMESTAMPs. The following SQL
statement fails:

 SELECT ((TIME '12:13:14')(integer))/10000

When considering the trade-offs of setting the session DateTimeFormat to old style or to
ANSI, you need to consider whether you need to do integer arithmetic on TIMEs or
TIMESTAMPs.

If you use parameterized SQL against ANSI TIMEs or TIMESTAMPs, you will need to use
CASTs in your SQL statements:

 SELECT * FROM table WHERE columnname = CAST ((?) AS TIME(6))

Again, when deciding how to set the session DateTimeFormat, you need to consider
whether adding these CASTs to your SQL statements is feasible.

Teradata Database supports the ANSI CURRENT_DATE, CURRENT_TIME, and
CURRENT_TIMESTAMP functions.

Teradata limits n, the fractional second precision, in a call to CURRENT_TIME(n) or
CURRENT_TIMESTAMP(n), to 6. ODBC allows n to be 9. The driver passes it unaltered to
Teradata, which will generate an error if it is larger than 6.

You can still use the ODBC scalar functions CURDATE and CURTIME, as well as the SQL
statements DATE and TIME.

The EXTRACT SQL statement produces a result set that has an ODBC style title. If you
prefer the title generated by Teradata, use SQLSetStmtOption or SQLSetStmtAttr to turn
on the SQL_NOSCAN option, and do not use ODBC syntax for DATE, TIME, and
TIMESTAMP literals. Alternately, you can specify your own titles after the EXTRACT SQL
statement.

You cannot use EXTRACT to obtain the default time zone from an ANSI TIME or
TIMESTAMP that does not include a time zone. When using EXTRACT to obtain the time
zone from an ANSI TIME or TIMESTAMP that does have a time zone, you must use the
TIME or TIMESTAMP prefix:

 SELECT EXTRACT (TIMEZONE_HOUR FROM TIME '12:13:14+07:00')

The ODBC Driver for Teradata maps both TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE to SQL_TYPE_TIME. Time zone values are truncated when converting values
to SQL_C_TYPE_TIME or SQL_C_TYPE_TIMESTAMP, but are preserved when mapping to
any of the ODBC C character types. Therefore, an application that requires time zone
values should use the ODBC C character types.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 231

Period Data Types
A period is an anchored time duration. It represents a set of contiguous time granules within
that duration. It has a beginning bound (defined by the value of a beginning element) and an
ending bound (defined by the value of an ending element). The representation of the period
is inclusive-exclusive (for example, the period extends from the beginning bound up to–but
not including–the ending bound).

The element type of a Period data type is the data type of the beginning and ending elements
of a value of that Period data type. The element type can be any DateTime data type. The
DateTime data types are DATE, TIME, and TIMESTAMP. The TIME and TIMESTAMP data
types have a number (0-6) of fractional seconds in the seconds field which can be specified,
or the default is 6; for example, TIME(3) and TIMESTAMP(6). TIME and TIMESTAMP can also
explicitly include a time zone field by specifying WITH TIME ZONE (if WITH TIME ZONE is not
specified, a time zone field is implicitly not included). Note that the element type must be the
same for both the beginning and ending elements of a period.

ODBC driver supports the following ODBC SQL types:

• SQL_PERIOD_DATE

• SQL_PERIOD_TIME

• SQL_PERIOD_TIME_WITH_TIME_ZONE

• SQL_PERIOD_TIMESTAMP

• SQL_PERIOD_TIMESTAMP_WITH_TIME_ZONE

These types are referred to as Period ODBC SQL types.

No new ODBC C types are added; the ODBC standard does not allow for that.

Availability of Period Data Types
Use of Period data types in the ODBC Driver follows the database; that is, the types are
available if the database supports them and are not available if the database does not
support them.

It is required that the ODBC Driver time format (see the DateTimeFormat=[A|I]A A
description in Teradata DSN Options) is set to ANSI when using Periods. The Date format
can be Integer or ANSI. The Timestamp format is always ANSI.

Retrieving Period Data
Period data received from the database can be retrieved in a character format
(SQL_C_CHAR and SQL_C_WCHAR) or as binary data (SQL_C_BINARY).

The default conversion as specified by SQL_C_DEFAULT is the same as the conversion
specified by SQL_C_BINARY.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 232

Period SQL to Character C type Conversion

The following table shows the format of returned data when retrieving it in a character
format:

Period SQL Type
Conversion to SQL_C_CHAR or
SQL_C_WCHAR

SQL_PERIOD_DATE The result is a character string:
(‘yyyy-mm-dd’, ‘yyyy-mm-dd’)

where the beginning and ending date
bounds are converted to the ‘yyyy-mm-
dd’ format that is always used by the
ODBC specification when converting
date SQL data (SQL_TYPE_DATE) to
the character C data.

Example:

(‘2007-05-01’, ‘2007-06-01’)

SQL_PERIOD_TIME The result is a character string in the
following format:
(‘hh:mi:ss[.f....]’,
‘hh:mi:ss[.f...]’)

where the beginning and ending time
bounds are converted to the “hh:mi:ss”
format that is always used by the ODBC
specification when converting time SQL
data (SQL_TYPE_TIME) to character C
data.

The “[.f...]” indicates the optional
fractional seconds. It is only included if
the Period timestamp precision is non-
zero. Up to 6 digits can be used for
fractional seconds (ODBC allows for 9,
but Period timestamps are limited to 6).

Example:

(‘06:20:21’, ‘17:12:00’)

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 233

Period SQL Type
Conversion to SQL_C_CHAR or
SQL_C_WCHAR

SQL_PERIOD_TIME_WITH_TIME_ZONE The result is a character string in the
following format:
(‘hh:mi:ss[.f...]+-hh:mi’’,
‘hh:mi:ss[.f...]+-hh:mi’’)

where the beginning and ending time
bounds are converted to the “hh:mi:ss+-
hh:mi’” format that is used by the ODBC
driver when converting TIME WITH TIME
ZONE to character C data.

Example:

(‘06:20:21.22+02:00’,
‘17:12:00.22+02:00’)

SQL_PERIOD_TIMESTAMP The result is a character string:
(‘yyyy-mm-dd hh:mi:ss[.f...]’, ‘yyyy-
mm-dd hh:mi:ss[.f...]’)

where the beginning and ending
timestamp bounds are converted to the
“yyyy-mm-dd hh:mi:ss[.f....]” format that
is always used by the ODBC specification
when converting timestamp SQL data to
character C data.

Example:

(‘2007-07-04 22:11:43.37’,
‘2007-07-04 22:11:50.00’)

SQL_PERIOD_TIMESTAMP_WITH_TIME_ZONE The result is the same as
SQL_PERIOD_TIMESTAMP with the
addition of the ‘+-hh:mi’ as described for
SQL_PERIOD_TIME_WITH_TIME_ZONE.

ODBC Driver for Teradata returns SQL_ERROR from the conversion if the receiving buffer
is too small. This is unlike DateTime types where a conversion to C character can result in
SQL_SUCCESS_WITH_INFO and a truncated string. The reason for the difference is that
a truncated DateTime string might be useful for the applications (for example: a truncated
SQL_DATE might be used to obtain just the year), but a truncated Period string is not.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 234

Period SQL to Binary C type Conversion

The following table shows the format of returned data when retrieving it in a binary format.

Period Data Type

Number
of
Bytes

Members
Passed

Members Detail (in the order
specified)

PERIOD(DATE) 8 2 DATE
members

Date: 4-byte, signed integer.
This integer represents a date in
the same manner as for a DATE
data type (for example,
10000*(year-1900)) +
(100*month) + day)

PERIOD(TIME(n)) 12 2 TIME
members

Second: 4-byte, signed integer.
This integer represents the
number of seconds scaled by
10**6 (for example, 12.56
seconds is returned as
12560000).

Hour: 1 unsigned byte. This byte
represents the number of hours.

Minute: 1 unsigned byte to client
form. This byte represents the
number of minutes.

PERIOD(TIME(n) WITH
TIME ZONE)

16 2 TIME WITH
TIME ZONE
members

Second: 4-byte, signed integer.
This integer represents the
number of seconds scaled by
10**6 (for example, 12.56
seconds is returned as
12560000).

Hour: 1 unsigned byte. This byte
represents the number of hours.

Minute: 1 unsigned byte. This
byte represents the number of
minutes.

Time Zone Hour: 1 unsigned byte.
This byte represents the hours
portion of the time zone

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 235

Period Data Type

Number
of
Bytes

Members
Passed

Members Detail (in the order
specified)

displacement, along with
whether the displacement is
positive or negative. A value of
16 represents 0 hours. A value
less than 16 represents a
negative time zone displacement
for the specified hours; for
example, if this is 10, the time
zone is displaced by -10 hours. If
the value is greater than 16, it
specifies a positive time zone
displacement of (Time Zone
Hour - 16) hours; that is, a value
of 20 implies a +4 hour
displacement.)

Time Zone Minute: 1 unsigned
byte. This byte represents the
minutes portion of the time zone
displacement.

PERIOD(TIMESTAMP(n)) 20 2
TIMESTAMP
members

Two TIMESTAMP members
containing:

Second: 4-byte, signed integer.
This integer represents the
number of seconds scaled by
10**6 (for example, 12.56
seconds is returned as
12560000).

Year: 2-byte, signed short
integer. This byte represents the
year value.

Month: 1 unsigned byte. This byte
represents the month value.

Day: 1 unsigned byte. This byte
represents the day of the month.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 236

Period Data Type

Number
of
Bytes

Members
Passed

Members Detail (in the order
specified)

Hour: 1 unsigned byte. This byte
represents the number of hours.

Minute: 1 unsigned byte. This
byte represents the number of
minutes.

PERIOD(TIMESTAMP(n)
WITH TIME ZONE)

24 2
TIMESTAMP
WITH TIME
ZONE
members

Two TIMESTAMP members
containing:

Second: 4-byte, signed integer.
This integer represents the
number of seconds scaled by
10**6 (for example, 12.56
seconds is returned as
12560000).

Year: 2-byte, signed short
integer. This byte represents the
year value.

Month: 1 unsigned byte. This byte
represents the month value.

Day: 1 unsigned byte. This byte
represents the day of the month.

Hour: 1 unsigned byte. This byte
represents the number of hours.

Minute: 1 unsigned byte. This
byte represents the number of
minutes.

Time Zone Hour: 1 unsigned byte.
This byte represents the time
zone displacement in hours,
along with whether the
displacement is positive or
negative. A value of 16
represents 0 hours. A value less
than 16 represents a negative
time zone displacement for the

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 237

Period Data Type

Number
of
Bytes

Members
Passed

Members Detail (in the order
specified)

specified hours; for example, if
this value is 10, the time zone is
displaced by -10 hours. If the
value is greater than 16, it
specifies a positive time zone
displacement of (Time Zone
Hour - 16) hours; that is, a value
of 20 implies a +4 hour
displacement.)

Time Zone Minute: 1 unsigned
byte. This byte represents the
minutes portion of the time zone
displacement.

Any target precision set by the application in the application record descriptor is ignored
by the driver. The Second values returned by the database are always 4-byte signed
integers with the seconds scaled by 10**6. The precision of the source data is available
through SQLDescribeCol/SQLColAttribute or directly in the Implementation Record
Descriptor.

Using Period Parameters

Character C Type to Period SQL Types

The source data must be in the format described in Period SQL to Character C type
Conversion.

The driver also supports the use of ODBC escape sequences occurring in the character
string representation of the period value.

Binary C Type to Period SQL

The source data must be in the format described in Period SQL to Character C type
Conversion.

An application can provide its own value for the precision of the period source data by
setting the SQL_DESC_PRECISION field of the application descriptor. The default
precision for the source data is the same as the precision of the target as indicated in the

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 238

DecimalDigits argument to SQLBindParameter. For example, a value of 14250000 in the
Second field and DecimalDigits=2 would allow the value to be inserted into a
PERIOD(TIME(2)).

The ColumSize argument to SQLBindParameter is ignored for Period data types.

Period Literals
A Period literal is used to specify a period constant. It has the form of the PERIOD keyword
followed by a quote string in a specific format. The element type of a period literal is derived
from the format of the DateTime values specified in the quoted string. The general format
of period literals is:

PERIOD ‘(element1,element2)’

Examples:

Date literal: PERIOD ‘(2005-02-03, 2006-02-04)’

Time literal: PERIOD ‘(12:12:12.340000, 13:12:12.340000)’

Note that the character representation of a period value from the database includes single
quotes around the elements and can therefore not be directly used in the construction of a
literal.

Geospatial Types
Geospatial types (ST_Geometry, MBR, and so on) are supported by the ODBC driver in a
transparent manner by making us of the import/export transform functionality of the
Teradata Database. For example, a value of type ST_Geometry is imported/exported as a
CLOB and a value of type MBR as a VARCHAR (256). Please refer to Teradata Database,
SQL Geospatial Types (B035-1181), for more information about the transform types for the
different Geospatial types.

An ODBC application sees the Geospatial types in the database as the standard SQL types
SQL_LONGVARCHAR or SQL_VARCHAR depending on the database transform type.
Values of the Geospatial types are transformed by the database to or from values of these
standard SQL types. All the syntax for types, methods, functions, and expressions as used
for Geospatial fall within the standard SQL syntax.

The specific Geospatial type behind the database transform type can be obtained through
the SQL_DESC_TD_UDT_NAME descriptor field, which returns the fully qualified name of the
Geospatial type. Please refer to SQL_DESC_TD_UDT_NAME for more information.

Note:

Large object (LOB) support should not be disabled when using Geospatial data types.
LOB support is enabled by default and the option to disable LOB support is deprecated.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 239

Number Data Types
The Teradata Database Number data types are available in ODBC if supported by the
database. A Teradata Database Number type is either Fixed or Floating as listed in the
following table.

Number variant Database type Description

Fixed Number NUMBER (p, s) Fixed decimal of p digits with s fractional digits

NUMBER (p) Equivalent to NUMBER(p, 0)

Floating Number NUMBER (*, s) Floating decimal of s fractional digits

NUMBER (*) Floating decimal

NUMBER Equivalent to NUMBER(*)

In ODBC the Number types are treated as standard SQL types. Fixed Number data types
are mapped to the standard SQL_DECIMAL data type and Floating Number data types are
mapped to SQL_DOUBLE. This means conforming applications do not need to know that
the database type corresponding to an SQL_DECIMAL or SQL_DOUBLE is a Number data
type.

If an application needs information indicating the database type is a Number type, then the
application can examine the Teradata ODBC-specific data type code. This code is returned
as a descriptor field in SQLColAttribute and SQLGetDescField. Additionally, the code is
returned as a Teradata-specific column in the result set from SQLGetTypeInfo,
SQLColumns, and SQLProcedureColumns.

The Teradata ODBC-specific data type codes are as follows:

• SQL_TD_FIXED_NUMBER for a Fixed Number

• SQL_TD_FLOATING_NUMBER for a Floating Number

Note:

The names SQL_TD_FIXED_NUMBER and SQL_TD_FLOATING_NUMBER are defined
in the tdsql.h file. For more information, see Teradata Extensions to the ODBC
Standard.

SQLGetTypeInfo
The following table shows how Number data types are reflected in selected columns from
the result set returned by SQLGetTypeInfo for SQL_DECIMAL and SQL_DOUBLE.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 240

DATA_TYPE TYPE_NAME COLUMN_SIZE CREATE_PARAMS NUM_PREC_RADIX TDODBC_DATA_TYPE

SQL_DECIMAL DECIMAL 38 precision, scale 10 SQL_DECIMAL

SQL_DECIMAL NUMBER 38 precision, scale 10 SQL_TD_FIXED_NUMBER

SQL_DECIMAL NUMBER 38 Precision 10 SQL_TD_FIXED_NUMBER

SQL_DOUBLE FLOAT 15 Null 2 SQL_DOUBLE

SQL_DOUBLE NUMBER 15 Null 10 SQL_TD_FLOATING_NUMBER

Retrieving Number Data
The Teradata Database Fixed Number types are mapped to SQL_DECIMAL. The standard
SQL_DECIMAL to ODBC C type conversions apply with the following notes:

• Conversion to SQL_C_BINARY yields the binary representation of the Number value
consisting of 1-byte length, 2-byte scale, and 1-17 bytes unscaled value.

• Conversion to SQL_C_DOUBLE or SQL_C_FLOAT may lose precision. In this case the
return code from the conversion will be SQL_SUCCES_WITH_INFO and SQLSTATE
01S07 generates.

Teradata Database Floating Number types are mapped to SQL_DOUBLE. The standard
SQL_DOUBLE to ODBC C type conversions apply with the following notes:

• Conversion to SQL_C_CHAR or SQL_C_WCHAR preserves the full precision of the
Floating Number, which may be greater than the current maximum of 15. The format of
the string is an ODBC numeric literal using either exponential notation or non-
exponential notation depending on the actual value.

• Conversion to SQL_C_DOUBLE (default conversion) or SQL_C_FLOAT may lose
precision. In this case the return code from the conversion is SQL_SUCCES_WITH_INFO
and SQLSTATE 01S07 is generated.

• Conversion to SQL_C_BINARY yields the binary representation of the Number value
consisting of 1-byte length, 2-byte scale, and 1-17 bytes unscaled value.

Using Number Parameters
The standard ODBC conversions apply with the following notes:

Conversion from SQL_C_CHAR to SQL_DOUBLE preserves a precision of up to 38 digits
of the number passed as a string (instead of just the precision of 15 when the underlying
type is a FLOAT).

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 241

Array Data Types
Teradata Database Array data type values appearing in result sets and used as statement
parameters are of ODBC SQL Variable Character type (SQL_VARCHAR or
SQL_WVARCHAR). The format of an array as ODBC SQL Variable Character is the
transformed format as described in SQL Data Types and Literals (B035-1143).

Briefly, the format is a string of each array element value separated by comma and enclosed
in parenthesis as shown as below, assuming the array has N elements:

(<element1>,<element2>,...<elementN>)

where each element is transformed depending on its type.

Arrays are visible through the ODBC Catalog functions as shown in the following table.

Catalog function Description

SQLTables TABLE_TYPE column: "TYPE".

TABLE_NAME column: Contains type name, i.e. the name of the
ARRAY type from the CREATE TYPE.

SQLColumns DATA_TYPE column: SQL_UNKNOWN_TYPE (zero)

TYPE_NAME column: Type name.

SQLProcedureColumns As for SQLColumns

XML Data Type
XML data type values include:

• XML documents.

• Non-well-formed text entities, including XML document fragments, such as sequences.

• XML schema predefined simple type values, such as atomic values.

The Teradata Database XML data type is available in ODBC if supported by the database.
The XML data type is shown in ODBC as a Teradata-defined SQL type named SQL_TD_XML.

The name SQL_TD_XML is defined in the tdsql.h file. For information, see Teradata
Extensions to the ODBC Standard.

Note:

LOB support should not be disabled when using XML data types. LOB support is
enabled by default and the option to disable LOB support is deprecated.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 242

SQLGetTypeInfo
The following table shows how the XML data type returns in selected columns from the
result set returned by SQLGetTypeInfo.

DATA_TYPE TYPE_NAME COLUMN_SIZE CREATE_PARAMS NULLABLE TDODBC_DATA_TYPE

SQL_TD_XML XML 2097088000 NULL SQL_NULLABLE SQL_TD_XML

XML Data Type Values and Conversions
The ODBC driver supports conversions of XML values to and from both ODBC Character
C types (SQL_C_CHAR and SQL_C_WCHAR) and the Binary C type SQL_C_BINARY.

Note:

XML data type values retrieved from the database may be complete XML documents,
but also non-well-formed text entities, including XML document fragments, such as
sequences or atomic values. XML data type values inserted into the database must be
XML documents (well-formed).

The recommended conversion of XML is to or from SQL_C_BINARY or SQL_C_WCHAR
because it eliminates conversion to a non-Unicode code page used by the application, which
can result in conversion errors. The default ODBC C type for SQL_TD_XML is
SQL_C_BINARY. SQL_TD_XML values represented as ODBC C types are listed below.

XML represented as Description

SQL_C_BINARY The value is a sequence of characters encoded in UTF8 regardless
of any encoding declaration in the XML text.

SQL_C_CHAR The value is a sequence of characters encoded in the application
code page regardless of any encoding declaration in the XML text.

SQL_C_WCHAR The value is a sequence of characters encoded in the Unicode
encoding in effect for the application (UTF8 or UTF16 for Linux/
Unix. UTF16 for Windows, UTF32 for Apple OS X). The encoding is
independent of any encoding declaration in the XML text.

For a given XML document the recommended ODBC C type for working with the document
in ODBC depends on the XML document encoding as determined by the XML declaration
in the document. Recommended ODBC C types for XML document encoding are listed
below.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 243

XML
Document
Encoding
Declaration

Recommended ODBC C type for working with the document in an ODBC
application

Windows Linux/Unix Apple OS X

UTF8 SQL_C_BINARY or
SQL_C_WCHAR. Note
that when using
SQL_C_WCHAR the
encoding will be UTF16

SQL_C_BINARY or
SQL_C_WCHAR.

SQL_C_BINARY or
SQL_C_WCHAR

UTF16 SQL_C_WCHAR SQL_C_WCHAR with
UTF16 Unicode
encoding as described
in Unicode Character
Types.

SQL_C_WCHAR

Other SQL_C_CHAR using
application code page
matching document
encoding

SQL_C_CHAR using an
application code page
matching the XML
document encoding.

SAL_C_CHAR with
locale LC_TYPE
setting matching the
document encoding.

JSON Integration
JSON (JavaScript Object Notation) is a data-interchange format.

It is a text based type that is used to encapsulate a set of name/value pairs, or an array of
values. This flexible format allows for convenient storage of varied data that is related in
some manner. Since this type is text based, it can be defined as accepting text in
CHARACTER SET UNICODE or LATIN. Other character sets are not supported.

The JSON data type can be used as a column of a table, as a parameter to or return from
a UDF/UDM/XSP/TDSP/Table Operator, and may be used to declare a local variable inside
of a TDSP. In each particular use of the JSON data type, the character set must be specified
(or the character set of the database will be used) and the maximum length must be set.

JSON data types may be used as the attribute of an ANSI Structured UDT, but not as the
base type of an ANSI Distinct UDT or as the element type of a Teradata ARRAY type.

The JSON data type can define a maximum length on a per instance basis. Variable
Maximum Length means the JSON type has some default maximum length, but that length
may be adjusted in places where that type is used in a manner analogous to the VARCHAR
data type. Thus the length may never exceed the absolute maximum length, but a particular
instance of the JSON type may define a shorter maximum length.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 244

That absolute maximum is equal to 16776192 bytes, so if the JSON type utilizes the LATIN
character set, that is equal to 16776192 characters and if it utilizes the UNICODE UTF16
character set, that is equal to 8388096 characters.

Note:

LOB support should not be disabled when using JSON data types. LOB support is
enabled by default and the option to disable LOB support is deprecated.

SQLGetTypeInfo
The ODBC function SQLGetTypeInfo function can be used to enumerate all ODBC SQL
types supported by a data source or retrieve information for a single ODBC SQL type. In
both cases it returns various information about the ODBC driver and Database specifics
for each ODBC SQL type. More than one data type supported by the data source can map
to a single ODBC SQL type identifier.

The function returns the results as a standard result set, ordered by DATA_TYPE and then
by how closely the data type maps to the corresponding ODBC SQL data type.

To support the JSON data type, the Teradata specific column TDODBC_DATA_TYPE will
be set to SQL_TD_JSON or SQL_TD_WJSON depending on the session character set. The
JSON data type is only exposed if LOB support is enabled.

The following table shows how JSON will be exposed by SQLGetTypeInfo using a non-
Unicode session. Note that the data type is the "key" passed to SQLGetTypeInfo, thus two
rows are returned for SQLGetTypeInfo(SQL_LONGVARCHAR).

Type
Name Data Type Column Size

Create
Params TDODBC_DATA_TYPE

CLOB SQL_LONGVARCHAR 2097088000 Max
length

SQL_LONGVARCHAR

JSON SQL_LONGVARCHAR 16776192 Max
length

SQL_TD_JSON
(18004)

In a Unicode session, the table looks like the following:

Type Name Data Type Column Size
Create
Params TDODBC_DATA_TYPE

CLOB()
CHARACTER
SET
UNICODE

SQL_WLONGVARCHAR 1048544000 Max
length

SQL_WLONGCHAR

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 245

Type Name Data Type Column Size
Create
Params TDODBC_DATA_TYPE

JSON()
CHARACTER
SET
UNICODE

SQL_WLONGVARCHAR 8388096 Max
length

SQL_TD_WJSON
(18005)

Note:

JSON will be returned as NULLABLE by SQLGetTypeInfo. This is the same as is
returned for XML. CLOB and BLOB data types are still returned as non-NULLABLE.

DATASET Data Type
The DATASET data type is a new Complex Data Type (CDT) supported by Version 16.0 of
the Teradata database that provides a mechanism to store self-describing data. Self-
describing data contains both raw data and matching schema. A schema describes how the
data is structured. The schemas do not need to be predefined, for example, during table
creation time. Schemas can be defined just before inserting the data, or they can be
packaged together with the data as data containers; this data architecture can loosely be
called late binding.

In the initial 16.0 release, the adopted storage format of a DATASET data type is the Apache
Avro format. Starting from 16.20, in addition to Avro, it supports CSV storage format as well.
DATASET data can be inserted or imported into a DATASET column in the Avro binary
format or in CSV format.

The name SQL_TD_DATASET_AVRO and SQL_TD_DATASET_CSV is defined in the tdsql.h file.

DATASET data can be retrieved as Avro binary or as CSV format and can be converted to
JSON format.

SQLGetTypeInfo Result Set
The following table shows how the DATASET data type returns in selected columns from
the result set returned by SQLGetTypeInfo.

Type
Name Data Type Column Size

Create
Params TDOBC_DATA_TYPE

DATASET
STORAGE
FORMAT
AVRO

SQL_TD_DATASET_AVRO
(18006)

2097088000 <null> SQL_TD_DATASET_AVRO
(18006)

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 246

SET TRANSFORM GROUP FOR TYPE Statement
The SET TRANSFORM GROUP FOR TYPE feature is implemented to support changing the
active transform for Teradata CDTs that have multiple transforms at a session level. This
feature allows the user to use the appropriate transform without having to create separate
USER account with different transform settings.

A new DDL statement SET TRANSFORM GROUP FOR TYPE is added. The syntax follows:

<set transform group statement> ::= SET TRANSFORM GROUP FOR TYPE <cdt name>
<transform group name>

For more information on this feature, refer to SQL Data Definition Language - Syntax and
Examples (B035-1144).

Examples
SET TRANSFORM GROUP FOR TYPE ST_GEOMETRY TD_GEO_VARCHAR;

SET TRANSFORM GROUP FOR DATASET STORAGE FORMAT AVRO TD_DATASET_AVRO_VARBYTE;

SET TRANSFORM GROUP FOR TYPE JSON CHARACTER SET LATIN TD_JSON_VARCHAR;

Usage
• Currently, the feature supports the following complex data types CDTs as they have

multiple transform groups:

◦ JSON

◦ XML

◦ ST_GEOMETRY

◦ DATASET

Note:

The only time JSON and XML uses transforms are when in Field, Record, or
Indicator modes. For MultipartRecord mode and External JSON/XML data
transfer, transforms are not used.

• This feature cannot be applied to user-defined types.

• In the same session, this statement can be executed multiple times for the same CDT
to switch to different transforms.

• Any transform group change for a CDT using SET TRANSFORM GROUP FOR TYPE
should occur before a statement’s preparation or after the prepared statement’s
execution. The transform group for a CDT cannot be changed between a statement’s

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 247

preparation and its execution as it would lead to undefined behavior. The ODBC driver
will throw an error message (mentioned in Error Message) in this scenario.

• If the logged-on USER already has transform settings, the SET TRANSFORM GROUP
FOR TYPE statement will modify the transform setting only for the current session.

Error Message
Below is the error message that the ODBC driver returns for the scenario described in
Usage.

Error Message Description

Error occurred as a SET
TRANSFORM GROUP FOR TYPE
statement was executed between
PREPARE and EXECUTE.

The driver returns this error on the execution of a
prepared statement if a SET TRANSFORM GROUP
FOR TYPE statement has been executed between the
preparation and execution of this statement.

NoPI Tables
Tables with no primary index (NoPI tables) are supported in ODBC Driver for Teradata. NoPI
tables are included in the result set from SQLTables with the TABLE_TYPE “TABLE” as are
tables with primary indexes.

A NoPI table can be recognized by the absence of a row for the primary index in the result
set from SQLStatistics (no rows with index TYPE equal to SQL_INDEX_CLUSTERED).

Trusted Sessions
Trusted Sessions provides more security to applications that interface between users and
the database, especially in cases where users can submit their own SQL query commands.
It prevents a user from possibly submitting "SET QUERY_BAND" commands to change a
proxy user. Trusted sessions are supported in Teradata database 13.10 or later.

The database does not allow SET QUERY_BAND SQL to set/change a proxy user on a
session having GRANT CONNECT THROUGH privilege with the ‘WITH TRUST_ONLY’
option, unless it is submitted as a trusted SQL request. The ODBC Driver submits an SQL
as trusted only when an SQL_ATTR_TRUSTED_SQL(13010) statement attribute is set by
calling SQLSetStmtAttr() with a value SQL_TRUE. Immediately after SQLExecute() or
SQLExecDirect() is called, SQL_ATTR_TRUSTED_SQL will be reset to the default value
SQL_FALSE.

For more information on the GRANT CONNECT THROUGH privilege, please refer the
database manual SQL Data Control Language (B035-1149).

The following is sample code to send a trusted SQL:

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 248

……….
……….
RETCODE result;

result = SQLSetStmtAttr(StatementHdl, SQL_ATTR_TRUSTED_SQL, (SQLPOINTER)SQL_TRUE,
SQL_IS_UINTEGER);
if (SQL_SUCCESS == result)
{

/ After SQL execution, the SQL_ATTR_TRUSTED_SQL attribute value will be
reset to SQL_FALSE

// to prevent any further use of SET QUERY_BAND until you change the
attribute to SQL_TRUE once again.

result = SQLExecDirect(yourStatementHdl, (SQLTCHAR *) "SET
QUERY_BAND='proxyuser=user1;'FOR SESSION; ", SQL_NTS);vt

if (SQL_SUCCESS != result)
{

// Handle error
}

}
else
{

// Handle error
}

Restrictions
The following section describes current known restrictions for the use of ODBC Driver for
Teradata.

Multi-Statement SQL Requests
ODBC Driver for Teradata permits multi-statement SQL requests. However, Teradata
Database enforces the restriction of only one Data Definition Language (DDL) statement
per request, and it must be the last statement of the request.

Note:

A Call procedure request in the new driver cannot be in a multi-statement request.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 249

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/sql-no-data

Teradata String Constants
Teradata string constants cannot exceed 255 characters. To handle strings with length
greater than 255 characters, you must use the ODBC parameter passing model through
SQLBindParameter().

Teradata Column Limitation
If the number of columns in the result set of a SQL Query exceeds the Teradata Database
limit of 2048, then ODBC Driver for Teradata returns the following error:

"Number of Columns Exceed the Database Limit"

WITH Clause
Teradata WITH...BY clauses on SELECT statements are not supported.

ODBC Driver for Teradata ignores aggregated results, returned from Teradata Database.

Asynchronous Operation
The purpose of allowing multiple statements per connection is for the user to retrieve
multiple result sets from a single connection. The application must allow the asynchronously
executing function to complete before switching to another statement on the same
connection (hdbc) and executing another function.

For multiple statements to execute in parallel asynchronously, the application must open a
separate connection for each statement.

This operation is consistent with the “Executing SQL Statements” chapter description in
the Release 2 ODBC Programmer’s Reference specification on “Executing Functions
Synchronously” (note 3).

ANSI Migration Issues

Transaction Semantics
Teradata and ANSI transactions are defined differently.

Data Truncation
In previous releases, Teradata did not generate errors when truncating character data
during the process of character string assignment. In ANSI mode, character truncation
always generates an error.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 250

Duplicate Rows
ANSI allows duplicate rows. Duplicate rows are possible only if the table does not contain
a primary key or any columns with unique constraints. In previous releases of Teradata,
duplicate rows generated from an INSERT ... SELECT statement were ignored and no error
or warning was generated. If a table permits duplicate rows, the duplicate rows are inserted
and an error is generated.

Updatable Cursors
ODBC Driver for Teradata does not implement the Teradata updatable cursor facility,
because certain aspects of the Teradata ANSI transaction modes are incompatible with
the ODBC manual auto commit modes. Applications can be serviced through the ODBC
Cursor library. ODBC Driver for Teradata supports read-only and forward-only cursors.

Case Sensitivity
Character data in ANSI is case specific. The ANSI UPPER function should be used for case
blind character comparisons.

Configuration Characteristics

Database Password Expiration
ODBC Driver for Teradata supports the Teradata Database password expiration security
feature. When ODBC Driver for Teradata detects that the user database password has
expired during a connect to a data source on Windows, a dialog box will display prompting
the user for a new password.

If a new password is specified, ODBC Driver for Teradata then sends a message to Teradata
Database setting the user password in the database to the new value.

ODBC Driver for Teradata will not change any password stored in the data source entry.
Even though the data source entry will not contain the new password, the user will be logged
into Teradata Database. If the user disconnects and then tries to reconnect with the same
data source, the connection will fail with an “invalid password” message, since the data
source will still contain the old password value. The user must manually change the value of
the password using the ODBC Administrator.

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 251

SQL Considerations

Newname in SELECT Statement
In the select-list in SELECT statements, each expression can be followed by [AS] newname,
where the AS keyword is optional, and newname is a name-title for the column. The
newname can optionally be enclosed in double quotes (as can all names). For more
information, see Teradata ODBC Specific Comparison Operators (deprecated in 14.10).

This syntax is compatible with X/OPEN™ SQL (X/Open requires the AS keyword), ANSI SQL
1992, Microsoft Access SQL, SyBase/SQL Server, and several others.

In addition, for better SQL Server compatibility, the newname can be enclosed in single
quotes instead of double quotes, although the use of single quotes should be discouraged
since it is not ANSI-compliant. We recommend that you do not use Teradata TITLE or
NAMED clauses, and instead use this syntax when possible.

ANSI Comments in SQL Requests
The ANSI comment starting with two dashes and ending at end-of-line can be used in SQL
requests. The comment is removed by the ODBC parser before the request is sent to
Teradata Database.

DSN Settings for Third-Party Applications
ODBC Driver for Teradata has specific application uses defined for available DSN settings.
The following table lists the DSN settings and their specific application use.

ODBC.INI Setting Name Name in DSN setup dialog
Specific
Application Use

AccountString=<account>

Or

Account=<account>

Account String –

CharacterSet=<charset name>

Or

CharSet=<charset name>

Session Character Set –

DateTimeFormat=[A|I]AA DateTime Format

DefaultDatabase=<database-name>

Or

Default Database –

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 252

ODBC.INI Setting Name Name in DSN setup dialog
Specific
Application Use

Database=<database-name>

DontUseHelpDatabase=[Yes|No]

Or

DontUseHelpDB=[Yes|No]

No HELP DATABASE –

EnableExtendedStmtInfo=[Yes|No] Enable Extended
Statement Information

–

EnableReadAhead=[Yes|No] Enable read-ahead –

EnableReconnect=[Yes|No] Enable Reconnect –

EnableUDFUpload=[Yes|No] Enable Client Side UDF
Upload

–

IANAAppCodePage=<ODBC application
code page>

– This is set for
application-
specific code
page number
when using
Unicode

IgnoreODBCSearchPattern=[Yes|No]

Or

IgnoreSearchPat=[Yes|No]

Ignore Search Patterns –

IntegratedSecurity=[Yes|No]

Or

UseIntegratedSecurity=[Yes|No]

Use Integrated Security –

– Log Error Events –

LoginTimeout=<integer0> Login Timeout Increase the
default
20 seconds to
higher value for
troubleshooting
purposes only.
This is a

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 253

ODBC.INI Setting Name Name in DSN setup dialog
Specific
Application Use

temporary
workaround.

MaxRespSize=<integer=<16775168> Maximum Response Buffer
Size

The default is
64K; for large
result sets, this
value can be
increased up to
16 MB.

MechanismName=<MechanismName>

Or

Authentication=<MechanismName>

Mechanism –

MechanismKey=<Value>

Or

AuthenticationParameter=<Value>

Parameter –

NoScan=[Yes|No] Disable Parsing –

PrintOption=[N|P] ProcedureWithPrintStmt –

retryOnEINTR Retry system calls (EINTR) KXEN

– Return Empty string in
CREATE_PARAMS columns
for SQL_TIMESTAMP

MS Access

ReturnGeneratedKeys=<value> Return Generated Keys –

– Return max. CHAR/
VARCHAR length as 32K

MS Access

SessionMode=[Teradata|ANSI] Session Mode Set to ANSI to
resolve
application
getting too many
end transaction
messages.

SplOption=[Yes|No] ProcedureWithSPLSource –

TCPNoDelay=[Yes|No] Use TCP_NODELAY –

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 254

ODBC.INI Setting Name Name in DSN setup dialog
Specific
Application Use

Translation DLL=<path> Translation DLL Name –

Translation Option=<option> Translation Option –

TDMSTPortNumber=<integer> TDMST Port Number Set to another
port number if
port 1025 is
already used. By
default, the
Teradata
Gateway is
listening to port
1025.

UDFUploadPath=<path> UDF Upload Path –

USE2XAPPCUSTOMCATALOGMODE=[Yes|

No]

Or

2XAPPCUSTOMCATALOGMODE=[Yes|No]

Enable Custom Catalog
Mode for 2.x Applications

MS Excel

Importing data
into an Excel
2000
spreadsheet by
SQL query (using
Data>>Get
External
Data>>New
Database Query)

UseColumnNames=[Yes|No]

Or

DontUseTitles=[Yes|No]

Use Column Names Crystal Reports

UseDataEncryption=[Yes|No]

Or

DataEncryption=[Yes|No]

Enable Data Encryption –

– Use DATE data for
TIMESTAMP parameters

MS Access and
other
applications that
are using
Microsoft Access
Jet databases

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 255

ODBC.INI Setting Name Name in DSN setup dialog
Specific
Application Use

– Use NULL for Catalog
Name

–

– Use Regional Settings for
Decimal Symbol

–

UseXViews=[Yes|No] Use X Views –

8: ODBC Driver for Teradata Application Development

ODBC Driver for Teradata® User Guide, Release 16.20 256

Overview
This appendix contains examples of release-independent 32-bit and 64-bit odbc.ini files
created by the installation program.

Release-Independent 32-bit odbc.ini File Example
[ODBC]
For Data Direct to load its error messages
Data Direct Driver Manager looks for the messages here:
"/opt/teradata/client/16.20/locale/xx_xx/LC_MESSAGES/"
InstallDir=/opt/teradata/client/ODBC_32
Trace=no

[ODBC Data Sources]
Teradata ODBC DSN=Teradata Database ODBC Driver 16.20

[Teradata ODBC DSN]
This key is not necessary and is only to give a description of the data source.
Description=Teradata Database ODBC Driver 16.20

Driver: The location where the ODBC driver is installed to.
Driver=/opt/teradata/client/ODBC_32/lib/tdataodbc_sb32.so

Required: These values can also be specified in the connection string.
DBCName=
UID=
PWD=

Optional
AccountString=
CharacterSet=ASCII
DatasourceDNSEntries=
DateTimeFormat=AAA
DefaultDatabase=
DontUseHelpDatabase=0
DontUseTitles=1
EnableExtendedStmtInfo=1

odbc.ini File Examples

A

ODBC Driver for Teradata® User Guide, Release 16.20 257

EnableReadAhead=1
IgnoreODBCSearchPattern=0
LogErrorEvents=0
LoginTimeout=20
MaxRespSize=65536
MechanismName=
NoScan=0
PrintOption=N
retryOnEINTR=1
ReturnGeneratedKeys=N
SessionMode=System Default
SplOption=Y
TABLEQUALIFIER=0
TCPNoDelay=1
TdmstPortNumber=1025
USE2XAPPCUSTOMCATALOGMODE=0
UseDataEncryption=0
UseXViews=0

Release-Independent 64-bit odbc.ini File Example
The installation program creates the release-independent 64-bit odbc.ini file in /opt/
teradata/client/ODBC_64.

[ODBC]
InstallDir=/opt/teradata/client/ODBC_64
Trace=0
TraceDll=/opt/teradata/client/ODBC_64/lib/odbctrac.so
TraceFile=/usr/joe/odbcusr/trace.log
TraceAutoStop=0

[ODBC Data Sources]
default=tdata.so
testdsn=tdata.so

[testdsn]
Driver=/opt/teradata/client/ODBC_64/lib/tdataodbc_sb64.so
Description=Teradata running Teradata V1R5.2
DBCName=208.199.59.208
LastUser=
Username=
Password=
Database=
DefaultDatabase=

A: odbc.ini File Examples

ODBC Driver for Teradata® User Guide, Release 16.20 258

[default]
Driver=/opt/teradata/client/ODBC_64/lib/tdataodbc_sb64.so
Description=Default DSN is Teradata 5100
DBCName=208.199.59.208
LastUser=
Username=
Password=
Database=
DefaultDatabase=

Release-Independent odbc.ini File for Apple OS X Example
[ODBC]
Trace = 1
TraceFile = /tmp/dmtrace.log

[ODBC Data Sources]
testdsn = teradata

[testdsn]
Driver = /Library/Application Support/Teradata/Client/ODBC/lib/tdataodbc_sbu.dylib
DBCName = sdll4771.labs.teradata.com
Username = testuser

A: odbc.ini File Examples

ODBC Driver for Teradata® User Guide, Release 16.20 259

Overview
This appendix contains examples of release-independent 32-bit and 64-bit odbcinst.ini
files created by the installation program.

Note:

This appendix is not applicable for Apple OS X.

Release-Independent 32-bit odbcinst.ini File Example
[ODBC Drivers]
Teradata Database ODBC Driver 16.20=Installed

[Teradata Database ODBC Driver 16.20]
Description=Teradata Database ODBC Driver 16.20
Driver=/opt/teradata/client/ODBC_32/lib/tdataodbc_sb32.so

Release-Independent 64-bit odbcinst.ini File Example
The installation program creates the release-independent 64-bit odbcinst.ini file in /opt/
teradata/client/ODBC_64.

[ODBC DRIVERS]
Teradata=Installed

[Teradata]
Driver=/opt/teradata/client/ODBC_64/lib/tdataodbc_sb64.so
APILevel=CORE
ConnectFunctions=YYY
DriverODBCVer=3.51
SQLLevel=1

Release-Dependent 32-bit odbcinst.ini File Example
[ODBC DRIVERS]
Teradata Database ODBC Driver 16.20=Installed

odbcinst.ini File Examples

B

ODBC Driver for Teradata® User Guide, Release 16.20 260

[Teradata Database ODBC Driver 16.20]
Driver=/opt/teradata/client/16.20/odbc_32/lib/tdataodbc_sb32.so
APILevel=CORE
ConnectFunctions=YYY
DriverODBCVer=3.51
SQLLevel=1

Release-Dependent 64-bit odbcinst.ini File Example
[ODBC DRIVERS]
Teradata Database ODBC Driver 16.20=Installed

[Teradata Database ODBC Driver 16.20]
Driver=/opt/teradata/client/16.20/odbc_64/lib/tdataodbc_sb64.so
APILevel=CORE
ConnectFunctions=YYY
DriverODBCVer=3.51
SQLLevel=1

B: odbcinst.ini File Examples

ODBC Driver for Teradata® User Guide, Release 16.20 261

Overview
This appendix provides example code from the ODBC options sections of the odbc.ini files.
The examples cover both 32-bit and 64-bit systems for all operating systems.

ODBC Options Section
The ODBC Options section [ODBC] of the odbc.ini file specifies the ODBC installation
directory and indicates whether Driver Manager tracing is enabled. When tracing is enabled,
all ODBC function calls made from an application can be logged to a specified trace file.

ODBC Options: IBM AIX, Linux, Solaris
[ODBC]
InstallDir=/opt/teradata/client/ODBC_64/
Trace=1
TraceDll=/opt/teradata/client/ODBC_64/lib/odbctrac.so
TraceFile=/usr/odbcusr/joe/trace.log
TraceAutoStop=1

ODBC Options: Apple OS X
[ODBC]
Trace=1
TraceFile=/tmp/trace.log
TraceAutoStop=1

Data Source Specification Options Example
The following code sample is an example of the option entries in the Data Source
Specification section named [financial].

[financial]
Driver=/opt/teradata/client/ODBC_64/lib/tdataodbc_sb64.so
Description=Teradata 5550H running Teradata Database
DBCName=123.45.67.10
DBCName2=123.45.67.11
DBCName3=123.45.67.12

ODBC Options Examples

C

ODBC Driver for Teradata® User Guide, Release 16.20 262

Username=odbcadm
Password=
Database=
DefaultDatabase=sales

DSN Tracing Options Example
Full tracing turned on in the 64-bit version of the teradata.teradataodbc.ini file:

[Driver]
ErrorMessagesPath=../odbc_64/ErrorMessages
LogLevel=6
LogPath=~/mylogs

C: ODBC Options Examples

ODBC Driver for Teradata® User Guide, Release 16.20 263

Overview
The new Teradata 16.20 driver now deprecates the SQL Transformations listed in this
section in order to comply better with standard SQL, standard ODBC and the Teradata
database.

Pseudo Type Mappings (deprecated in 16.20)
A number of pseudo SQL type names are deprecated as of 16.20. The names are not used
in Teradata SQL and are not required in ODBC. They were introduced in the Teradata ODBC
driver to facilitate migration of early applications from non-Teradata environments.

The names could be used in table column definitions and in certain type casts. The ODBC
parser changed the pseudo-type to a suitable Teradata SQL data type. The following table
summarizes the deprecated pseudo-types.

Instead of this pseudo SQL data type Use the following Teradata SQL Data Type

BINARY[(n)] BYTES[(n)]

BIT BYTEINT FORMAT ‘9’

DOUBLE FLOAT or DOUBLE PRECISION

LONG VARBINARY VARBYTE(32000)

TINYINT BYTEINT

VARBINARY(n) VARBYTE(n)

Standard Type Mappings (deprecated in 16.20)
The following transformations of standard Teradata types are deprecated as of 16.20.

Teradata
Data Type Legacy Transformation by Teradata ODBC

BIGINT When used with early databases that did not support BIGINT the Teradata
ODBC driver would map BIGINT to DECIMAL(18,0).

Deprecated SQL Transformations

D

ODBC Driver for Teradata® User Guide, Release 16.20 264

Teradata
Data Type Legacy Transformation by Teradata ODBC

All Teradata database releases supported by ODBC 15.10 now support the
native BIGINT type and this mapping is obsolete.

DATE ANSI Date mode is the default and is what an application should use.

In Integer Date mode, the DATE type, when used in a column definition or type
cast will be replaced by:

DATE FORMAT 'YYYY-MM-DD'

The replacement occurs only if no FORMAT phrase has explicitly been used.

The Integer Date mode is supported by the database and the default
database format is ‘YY/MM/DD’, which is different from the standard ODBC
and ANSI format. An application that uses Integer Date mode and relies on
ODBC to set the date FORMAT in the SQL text previously could use the
EnableLegacyParser option, but this has been deprecated. Your application
needs to use ANSI Date mode (preferred default) or set explicit FORMATs.

TIME[(n)] If Integer Time mode is used then the TIME type when used in a column
definition or type cast will be replaced by:
INTEGER FORMAT '99:99:99'

Any precision is ignored.

The Integer Time mode is an ODBC TIME type implementation for database
versions not supporting true ANSI TIME types.

Integer Time mode is deprecated in ODBC 15.00 and is not recommended for
use.

IN-List Expansion (deprecated in 16.20)
The parser transforms an IN-list containing ODBC Date, Time, Timestamp, or Interval literal
escapes into a sequence of comparisons to work around a limitation in the database where
only constants and not expressions are allowed in the in-list. This transformation is
deprecated in 16.20.

For example, in Integer Date mode the ODBC Date literal {d '2008-11-28'} is expanded to:

('2008-11-28' (DATE, FORMAT 'YYYY-MM-DD'))

The resulting expansion is regarded as an expression by the database and is not allowed in
the IN-list. The ODBC parser therefore transforms a construct like:

... x IN ({d '2008-11-28'}, {d '2009-12-29'})

D: Deprecated SQL Transformations

ODBC Driver for Teradata® User Guide, Release 16.20 265

into:

... (x = ('2008-11-28' (DATE, FORMAT 'YYYY-MM-DD'))

Or

x = ('2009-12-29' (DATE, FORMAT 'YYYY-MM-DD')))

With the new parser the ODBC date literal escape sequence is expanded as DATE 'YYYY-
MM-DD'. For example in Integer Date mode the ODBC Date literal {d '2008-11-28'} is
expanded to: DATE '2008-11-28'. New parser in-list expansion of Integer-Date works fine,
but does will work in the case of Integer-Time, because the resulting Native-Syntax is an
expression. The workaround is to switch to ANSI time.

ODBC-Style Named Indexes (deprecated in 15.00)
The ODBC driver extends the SQL grammar with alternate CREATE INDEX and DROP
INDEX statements, allowing an index created using the alternate CREATE INDEX syntax to
be dropped using the alternate DROP INDEX syntax, by just specifying the index name and
not also the associated table name and either the column list or index name.

This feature was originally designed for earlier versions of ODBC, and will be deprecated in
a future release. The alternate syntax for both CREATE INDEX and DROP INDEX is not
standard and not portable. The recommendation is to use the Teradata SQL database
syntax for these statements as described in SQL Data Definition Language (B035-1144).

CALL to EXEC Conversion (deprecated in 14.10)
By default, CALL statements are considered as the SQL for MACRO execution, and the
statements are converted to EXEC with the ODBC driver. The CallSupport or
DisableCALLToEXECConversion keywords are currently available to disable conversion of
CALL statements to EXEC, so the statements are handled as CALL statements for stored
procedure execution.

This feature was originally designed for earlier versions of ODBC, and will be deprecated in
a future release.

The default setting has been changed from no to yes. It is strongly advised to retain the
default CallSupport or DisableCallToExecConversion setting of yes for best compliance with
the ODBC specification, and to prepare for the removal of this option in a future release.

Teradata ODBC Specific Comparison Operators (deprecated
in 14.10)
The ODBC Driver for Teradata support for mapping != and ~= comparison operators to the
standard SQL operator <> has been deprecated. Queries that use these operators will not
be successful using other Teradata client access products and for this reason the Teradata

D: Deprecated SQL Transformations

ODBC Driver for Teradata® User Guide, Release 16.20 266

ODBC support of these operators is deprecated. Furthermore, this alternative will be
unavailable in ODBC Driver for Teradata 16.00.

It is strongly advised to not use these Teradata ODBC-specific comparison operators, and
to change existing SQL scripts to avoid the usage of these operators.

For example:

SELECT p FROM t WHERE p <> 7 instead of SELECT p FROM t WHERE p != 7

ODBC Scalar Functions Outside Escape Sequences
(deprecated in 14.10)
The ODBC Driver for Teradata support for ODBC scalar functions outside escape sequences
has been deprecated. This is a Teradata specific extension to the ODBC standard and its
use is deprecated for compatibility reasons. Support will be discontinued in order to facilitate
reuse of SQL between products. Support for this feature will be unavailable in ODBC Driver
for Teradata 16.00.

ODBC scalar functions should always be used within escape sequences. For example:

SELECT {fn DAYOFWEEK(delivery_date)} FROM order_table;

D: Deprecated SQL Transformations

ODBC Driver for Teradata® User Guide, Release 16.20 267

Overview
This appendix provides high-level information about the ODBC installation validation script,
tdxodbc (also referred to as the ODBC sample program) that is installed as part of ODBC
Driver for Teradata.

Location of the ODBC Sample Program
Upon successful execution installation of the ODBC Driver for Teradata, a sample program
(tdxodbc) is available in the following location, depending on the operating system.

Platform Location of tdxodbc Example

Windows 32-bit <InstallDir>\Teradata\Client
\<version>\Bin

C:\Program Files (x86)\Teradata
\Client\16.20\Bin

Windows 64-bit <InstallDir>\Teradata\Client
\<version>\Bin

C:\Program Files\Teradata\Client
\16.20\Bin

UNIX/Linux 32-bit <InstallDir>/teradata/client/
<version>/bin

/opt/teradata/client/16.20/bin

UNIX/Linux 64-bit <InstallDir>/teradata/client/
<version>/bin

/opt/teradata/client/16.20/bin

Apple OS X /Library/Application Support/
teradata/client/<version>bin

/Library/Application Support/
teradata/client/16.20/bin

Sample Output
The ODBC sample program (tdxodbc) provides usage information with the "-h" option. The
command "tdxodbc -h" displays usage of the sample program with details of various
arguments that can be sent to this executable. For example:

./tdxodbc -h

USAGE: tdxodbc
tdxodbc -c SQLConnect [-d <dsn>] [-u <user name>] [-p <password>]
tdxodbc -c SQLDriverConnect [-C <connection string> | [[-S <server name>] [-u <user

ODBC Sample Program Usage Information

E

ODBC Driver for Teradata® User Guide, Release 16.20 268

name>] [-p <password>] [-T <driver name>]]] [-t [-n <num of connections>]]
OPTIONS:
-c <connect type> [SQLConnect | SQLDriverConnect] default:SQLConnect
-d <dsn>
-u <user name>
-p <password>
-C <connection string> example: -C "DRIVER=Teradata; DBCNAME=MYCOP1; UID=dbc;
PWD=dbc;"
-T <driver name> default: -T Teradata
-S <server name> example: -S MYCOP1
-h Display usage
-t connect test only
-n <num of connections> applicable only with -t

Executing tdxodbc to Validate Installation
You can validate ODBC Driver installation by executing tdxodbc to connect to a database
and submit sample SQLs for execution.

Windows

Sample Command

tdxodbc -c SQLDriverConnect -C "DSN=testdsn;UID=dbc;pwd=dbc;"

Restrictions and Considerations

• Before executing the command, ODBC Administrator needs to be configured with the
required DSN. In the sample command, “testdsn” is the configured DSN name.

• After executing the command, it should successfully connect the database and prompt
for SQL to be executed.

• You can submit any simple SQL statement such as “select date” to verify that ODBC
Driver is properly installed.

• To ensure that the message catalog file is installed properly, you can submit an
incorrect SQL statement such as “create table (int)” and verify the error message.

• Exit the program by entering “quit” when prompted for SQL.

E: ODBC Sample Program Usage Information

ODBC Driver for Teradata® User Guide, Release 16.20 269

Sample Output

C:\Program Files (x86)\Teradata\Client\16.20\bin>tdxodbc -c
SQLDriverConnect -C "DSN=testdsn;UID=dbc;pwd=dbc;"

Connecting with SQLDriverConnect("DSN=testdsn;UID=dbc;pwd=dbc;")...

.....ODBC connection successful.

ODBC version = -03.80.0000-
DBMS name = -Teradata-
DBMS version = -16.20.0064 16U.20.00.64-
Driver name = -TDATA32.DLLDriver
version = -16.20.00.00-
Driver ODBC version = -03.80-

(type quit to terminate adhoc)
Enter SQL string : quit

'quit' command detected

ODBC connection closed.

UNIX/Linux/Apple OS X
On UNIX/Linux platforms the same steps can be followed to verify the installation, except
that there is a prerequisite to set the ODBCINI environment variable.

1. Set the ODBCINI variable to a default odbc.ini file that comes as part of ODBC
installation.

Example: export ODBCINI=/opt/teradata/client/ODBC_32/odbc.ini

2. Modify this odbc.ini file with the required DBCName, etc.

3. After setting ODBCINI, follow the sample steps provided above (in case of Windows) to
verify successful connection and executing sample SQLs.

More details about setting ODBCINI can be found in the ODBC User Guide.

E: ODBC Sample Program Usage Information

ODBC Driver for Teradata® User Guide, Release 16.20 270

Overview
Multiple Version Support is a new feature that allows the coexistence of multiple driver
versions on a system at the same time. The following table lists a series of installation
scenarios.

Installation
Scenario Existing Install Remarks

Upgrade
Windows

14.10.00.00 and greater up
to 16.20

16.20 Pre-14.10 releases have to
be removed before installing
14.10.00.00 and later
versions.

Upgrade
UNIX-with
provided
setup
(.setup.sh)

Native installer upgrades
tdodbc1620-16.20.00.00
to tdodbc1620-16.20.00.01

16.20 and
later

The native installer cannot
upgrade from tdodbc1510
to tdodbc1620 since the
package name is different.

Fresh Install N/A 16.20 No driver already exists on
the system and then 16.20
is installed.

Side-by-
Side

15.10.01.x and/or 16.10 16.20 15.10.01.xx or 16.10 already
exists on the system and
then 16.20 is installed in
addition to 16.10.

MultiVersion Support

F

ODBC Driver for Teradata® User Guide, Release 16.20 271

Installation
Scenario Existing Install Remarks

Note:

Existing applications that
use DSN-less connections
with the driver name
Teradata may connect with
the 16.10 driver. If you want
to connect with the 16.20
driver then you may have to
either uninstall 16.10 and
create a custom driver
name or change your
application to use a
different connection string.

Note:

You can have 15.10.01x
and/or 16.10 and 16.20 all
installed side-by-side.

Side-by-
Side

16.20 15.10.01.x
and/or
16.10

15.10.01.x or later is
installed on the system and
then 16.10 is installed in
addition to 16.20.

Note:

You can have 15.10.01x
and/or 16.10 and 16.20 all
installed side-by-side.

UNIX Operating System
The active TTU of the system at any given time is the version of the driver that was most
recently installed on the system. For example, if 16.10 is installed and then 16.20 is installed,
then 16.20 is the active TTU.

There are three different choices for odbc.ini and odbcinst.ini.

1. Inside the release independent directories. By default, those are /opt/teradata/client/
ODBC_32/ and /opt/teradata/client/ODBC_64/.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 272

2. Inside the release specific directories. For 16.20, that would be /opt/teradata/client/
16.20/odbc_32/ and /opt/teradata/client/16.20/odbc_64/.

3. Custom file location. The user can create their own odbc.ini and odbcinst.ini files and
put them in any location on the system and set the ODBCINI and ODBCINSTINI
environment variables accordingly.

Inside the release independent directories (i.e., /opt/teradata/client/ODBC_32/ and /opt/
teradata/client/ODBC_64/) there will be symbolic links for locale, lib, and include which will be
pointing to their corresponding directories for the active TTU.

16.20 as the Active TTU
If 16.20 is the active TTU, then we would have the following:

/opt/teradata/client/ODBC_32/locale -> /opt/teradata/client/16.20/odbc_32/locale

/opt/teradata/client/ODBC_32/lib -> /opt/teradata/client/16.20/lib

/opt/teradata/client/ODBC_32/include -> /opt/teradata/client/16.20/include

/opt/teradata/client/ODBC_64/locale -> /opt/teradata/client/16.20/odbc_64/locale

/opt/teradata/client/ODBC_64/lib -> /opt/teradata/client/16.20/lib64

/opt/teradata/client/ODBC_64/include -> /opt/teradata/client/16.20/include

Inside odbc.ini and odbcinst.ini, all file paths are given in terms of release independent
paths which use the symbolic links given above.

For example, the driver location given in /opt/teradata/client/ODBC_32/odbc.ini is Driver=/
opt/teradata/client/ODBC_32/lib/tdataodbc_sbu.so which corresponds to /opt/teradata/
client/16.20/lib/tdataodbc_sbu.so if 16.20 is the active TTU.

Release-Independent odbc.ini File
If the ODBCINI environment variable is set to a release-independent odbc.ini file, then the
application will be using the active TTU version of the driver. If the desired driver version is
not the active TTU version, then you must either make the desired version the active TTU
or set the ODBCINI environment variable to an odbc.ini inside the desired version's directory.
See example below:

export ODBCINI=/opt/Teradata/client/16.20/odbc_32/odbc.ini

DSN-Less Connection
If you are using a DSN-Less connection, then you must use a driver name that exists in your
odbcinst.ini file. If you are using release independent odbc.ini and odbcinst.ini files then the
default driver name to use is Teradata. Otherwise, for 16.20 and beyond, if you are using

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 273

release dependent odbc.ini and odbcinst.ini files then the default driver name is Teradata
Database ODBC Driver XX.YY where XX.YY is the version.

For example, ODBCINI=/opt/Teradata/client/16.20/odbc_32/odbc.ini then a successful
connection would use a connection string like "DRIVER={Teradata Database ODBC Driver
16.20};DBCName=156.43.66.95;UID=username;PWD=password;".

Creating a Custom Driver Name
If you want to use your own custom driver name, then you will have to modify the
odbcinst.ini file to include more driver names.

Below is a sample odbcinst.ini file with a custom driver name for a 16.20 driver. The bold
font indicates what is added to the odbcinst.ini file for the custom driver.

[ODBC DRIVERS]
Teradata=Installed
Custom Driver=Installed
[Teradata]
Driver=/opt/teradata/client/16.20/lib/tdataodbc_sb32.so
APILevel=CORE
ConnectFunctions=YYY
DriverODBCVer=3.51
SQLLevel=1
[Custom Driver]
Driver=/opt/teradata/client/16.20/lib/tdataodbc_sb32.so
APILevel=CORE
ConnectFunctions=YYY
DriverODBCVer=3.51
SQLLevel=1

*** 32bit version: ***
[ODBC Drivers]
Teradata Database ODBC Driver 16.10=Installed

[Teradata Database ODBC Driver 16.10]
Description=Teradata Database ODBC Driver 16.10
Driver=/opt/teradata/client/16.10/lib/tdataodbc_sb32.so

*** 64bit version: ***
[ODBC Drivers]
Teradata Database ODBC Driver 16.10=Installed

[Teradata Database ODBC Driver 16.10]

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 274

Description=Teradata Database ODBC Driver 16.10
Driver=/opt/teradata/client/16.10/lib64/tdataodbc_sb64.so

Removing a Custom Driver Name
To remove a custom driver name, you must modify the odbcinst.ini file and do the reverse
of adding a custom driver name. Using the example provided to create a custom driver
name, you would remove the lines in bold font to remove the custom driver.

Teradata ODBC Driver Installation
The Teradata ODBC Driver installation creates a set of symbolic links for the DataDirect
ODBC Driver Manager. An application may be affected if the symbolic links are pointing to
a newer or older version of the driver manager.

There are two ways to determine which driver manager is used.

• Set the driver manager symbolic link manually.

Such a command might look something like:

ln -sf /opt/teradata/client/16.20/lib/libodbc.so /usr/lib/libodbc.so

This will affect all applications on the system using ODBC.

• Set the LD_LIBRARY_PATH to the directory containing the libodbc.so file you want to
use.

Such a command might look something like:

export LD_LIBRARY_PATH=/directory/to/driver/manager/

This will only apply to the particular session being run.

Refer to the README file for the DataDirect Driver Manager Compatibility.

Apple OS X
Inside the release independent directory (/Library/Application Support/teradata/client/
ODBC) there is an odbc.ini file and symbolic links for lib and include which will be pointing to
the corresponding directories for the active TTU.

16.20 as the Active TTU
If 16.20 is the active TTU, then we would have:

/Library/Application Support/teradata/client/ODBC/lib -> /Library/Application
Support/teradata/client/16.20/lib

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 275

/Library/Application Support/teradata/client/ODBC/include -> /Library/Application
Support/teradata/client/16.20/include

Inside odbc.ini, all file paths are given in terms of release independent paths which use the
symbolic links given above.

For example, the driver location given in /Library/Application Support/teradata/client/
ODBC/odbc.ini is Driver=/Library/Application Support/teradata/client/ODBC/lib/
tdataodbc_sbu.dylib which corresponds to /Library/Application Support/teradata/
client/16.20/lib/tdataodbc_sbu.dylib if 16.20 is the active TTU.

System DSNs can be found in the odbc.ini files in the default location of /Library/ODBC/.

User DSNs can be found in ~/Library/ODBC/. Alternatively, the ODBCINI environment
variable can point to an odbc.ini file present in a non-default location.

Release-Independent odbc.ini File
If the ODBCINI environment variable is set to a release-independent odbc.ini file, then the
application will be using the active TTU version of the driver. If the desired driver version is
not the active TTU version then you must either make the desired version the active TTU
or set the ODBCINI environment variable to an odbc.ini file inside the desired version's
directory. See example below:

export ODBCINI=/Library/Application\ Support/teradata/client/16.20/odbc/odbc.ini

For 16.20 and beyond, the default driver name is Teradata Database ODBC Driver XX.YY
where XX.YY is the version. A successful connection may use a connection string like
"DRIVER={Teradata Database ODBC Driver
16.20};DBCName=156.43.66.95;UID=username;PWD=password".

Creating a Custom Driver Name
A custom driver name can be created using the instdrv tool. By default, the tool is located
in /Library/Application Support/teradata/client/16.20/odbc/bin/odbcinst.ini file to
include more driver names.

For example, suppose the driver name Teradata is hardcoded in your application and you
need to connect using the driver name Teradata rather than the default name of Teradata
Database ODBC Driver 16.20. Navigate to the directory that contains the instdrv tool and
execute the following command:

sudo ./instdrv -i "Teradata;Driver=/Library/Application Support/teradata/client/
16.20/lib/tdata.dylib;Setup=/Library/Application Support/teradata/client/16.20/lib/
TeradataODBCSetup.bundle/Contents/MacOS/TeradataODBCSetup"

Below is the resulting odbcinst.ini file with two driver names for the16.20 driver.

The odbcinst.ini for SEN on Mac OS:

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 276

[ODBC Drivers]
Teradata Database ODBC Driver 16.20=Installed

[Teradata Database ODBC Driver 16.20]
Description=Teradata Database ODBC Driver 16.20
Driver=/Library/Application Support/teradata/client/16.20/lib/tdataodbc_sbu.dylib
Setup=/Library/Application Support/teradata/client/16.20/lib/
TeradataODBCSetup.bundle/Contents/MacOS/TeradataODBCSetup

Removing a Custom Driver Name
To remove a custom driver name, you must modify the odbinst.ini file and remove the lines
pertaining to the driver name you want to remove. Using the example provided to create a
custom driver name, you would remove the lines in bold font to remove the driver name
Teradata.

Windows
For 16.20 and beyond, the driver name is Teradata Database ODBC Driver XX.YY where XX.YY
is the version. For earlier versions the driver name is Teradata. The appropriate driver name
must be used for DSN-less connection strings and when creating new DSNs.

Creating a Custom Driver Name
On Windows, custom driver names can be created using the registry.

Suppose the driver name Teradata is hardcoded in your application and you need to connect
using the driver name Teradata rather than the default name of Teradata Database ODBC
Driver 16.20.

1. Open the registry.

• For the 32 bit driver navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC
\ODBCINST.INI.

• For the 64 bit driver navigate to HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI.

2. In the subdirectory ODBC Drivers, right-click and select New > String Value and name it
Teradata.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 277

3. Right-click Teradata and select Modify.
The Edit String dialog box appears.

4. Type Installed in the Value data field.

5. Right-click ODBCINST.INI, select New > Key and name it Teradata.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 278

6. For each string value field in Teradata ODBC Driver 16.20, create a corresponding value
in the new custom key, Teradata. Under the new key, (Default), Description, Driver, and
Setup appear as shown in the figure below.

Now you can create a new DSN with the driver name Teradata.

Removing a Custom Driver Name
1. Under ODBC Drivers, delete the driver name.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 279

2. Delete the subdirectory under ODBCINST.INI for the driver name you are removing.

General Guidelines
• For DSN-less connections, try keeping the Connection string configurable as the driver

name will change with each new release.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 280

• Use release-independent directories when you don't expect your application to be
negatively affected by installing new versions of the driver.

• Use release-specific directories when you are relying on a specific version of the driver
for your application.

F: MultiVersion Support

ODBC Driver for Teradata® User Guide, Release 16.20 281

Deprecated Features for New Teradata ODBC Driver
The following sections list and describe the deprecated features from the old Teradata
ODBC driver not available in the new Teradata ODBC Driver.

Disable Dialog Box Popups

The old driver allowed the user to disable popup dialog boxes by using the configuration
options QuietMode or RunInQuietMode. Popup dialog boxes are not present in the new driver,
and these options are not available.

Integer Time

The old driver allowed the user to specify Integer Time in the DSN option DateTime Format
or the configuration option DateTimeFormat. Integer Time mode has been removed from the
new driver for compatibility reasons, and these options cannot be used to specify Integer
Time in the new driver.

Bypass State Check Level

The old driver allowed the user to bypass the ODBC state check for open cursors by using
the DSN option State Check Level or the configuration option StCheckLevel. These options
are not available in the new driver.

Disable Prepare

The old driver allowed the user to disable the prepare step for SQLDirectExec statements
by using the DSN option Disable Prepare For SQL or the configuration option
SQLWithCommentsOrParenthesis. These options are not available in the new driver.

Application Catalog Database

The old driver allowed the user to include a specified database in table searches under
specific circumstances by using the configuration option AppCatalogDB. This option invoked
non-standard behavior, and is not available in the new driver.

New Teradata ODBC Driver Compatibility
Reference

G

ODBC Driver for Teradata® User Guide, Release 16.20 282

Disable Asynchronous Operation

The old driver allowed the user to silently ignore attempts to enable asynchronous operation
by using the configuration option DisableAsync. This option invoked non-standard behavior,
and is not available in the new driver.

Disable Native Large Object Support

The old driver allowed the user to disable support for Native Large Object datatypes by using
the DSN option Use Native Large Object Support or the configuration option
UseNativeLOBSupport. These options are not available in the new driver.

Return Output Parameters as ResultSet

The old driver allowed the user to return INOUT and OUT parameters as a ResultSet rather
than as parameters by using the configuration option OutputAsResultSet. The ODBC
specification no longer has an option for returning these parameters as a ResultSet, and this
option is not available in the new driver.

ClientKanjiFormat (UNIX/Linux only)

On UNIX and Linux systems, the old driver allowed the user to specify a character set format
by using the configuration option ClientKanjiFormat. This option is not available in the new
driver.

Redisplay Reconnect Wait

The old driver allowed the user to specify how long to display the ODBC continue/cancel
reconnection prompt during a reconnection by using the Redisplay Reconnect Wait DSN
option. This prompt is not displayed in the new driver, and this option is not available.

New Teradata ODBC Features

Overview

The following features are available in the new Teradata ODBC Driver.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 283

Differences in Driver Implementation

The new driver defaults to Deferred Mode, as this is faster if you do not want to cache into
memory. SLOB is better in certain cases, such as when working with geospatial data.

There are differences between the old and the new driver's SLOB implementation:

• The new driver can cache, or attempt to cache, up to 2GB of all SLOBs in a row.

• The old driver only caches two Response Buffers, up to 32MB.

The new driver has three configuration parameters:

• 1- Enable SLOB Random Access

• 2- Max size of one SLOB

• 3- Max size of all SLOBs in a Row

When #1 is set to True, the new driver will cache up to #3, potentially up to 2GB.

LightWeight Parser

The new driver uses a proprietary parsing mechanism to replace Teradata’s
LightWeightParser (LWP). This implementation of the LWP streamlines maintenance and
overcomes non-trivial issues that exist in the original LWP.

Connection Testing

The new driver provides a mechanism for testing connections. When creating a DSN, you can
click the Test button in the Create New Data Source dialog box to check if the driver can
connect to the data store using the DSN.

NOTICE
You must provide a username and password to test the connection. However, make sure
you do not save your credentials in the DSN, as this presents a security risk.

Connection String Syntax

If a value in a connection string is enclosed in braces ({}), and the value itself contains a
closing brace (}) immediately followed by a semicolon (;), the old driver cannot parse it. The
new driver can parse these values successfully, but the closing brace within the value must
be escaped with another closing brace.

For example, in a connection string where the UID property is set to the value {};, you must
specify it as follows: UID= {{}};}

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 284

Return Generated Keys

The Return Generated Keys option, or the ReturnGeneratedKeys connection property, enables
the driver to return the RowCount and ResultSet from requests that insert data into identity
columns. The old driver supports this feature for SQLExecute only, while the new driver
supports this feature for both SQLExecute and SQLExecDirect.

ASCII Character Session Set

In the old driver, specifying the Client Character Set as ASCII indicates an extended ASCII
character set. In the new driver, specifying the Client Character Set as ASCII indicates a
standard 7-bit US ASCII character set.

In addition, the new driver follows the International Character Set Support (B035-1125)
documentation. If any characters are used that are outside the 7-bit ASCII range, that is,
characters with values from 0x80 to 0xff, then a language-specific session character set
should be used.

Converting between CHAR and Numeric Values

When converting data from CHAR to numeric values, if the CHAR is not a standard valid
representation of a number then the conversion fails. The old driver supported extra leading
and trailing spaces as well as spaces between the sign and the number, for example, "+ 789",
" - 504.E1", " + .123E1 ". The new driver supports leading and trailing spaces, but does not
support spaces between the sign and number.

Row Count Results

When executing operations that return row counts (instead of result sets), the old driver
returns a value. The new driver returns the value ROW_COUNT_UNKNOWN (-1) except when
executing one of the following operations:

• Insert

• Update

• Delete

• Merge

Creating Stored Procedures

When creating stored procedures, the old driver reports any warnings that occur. The new
driver does not report warnings.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 285

Creating User-Defined Functions

When resolving a CREATE request for a UDF (user-defined function), the old driver returns
SQL_SUCCESS_WITH_INFO. The new driver returns SQL_NO_DATA_FOUND.

Using Descriptors for SQL_C_NUMERIC

The old driver does not use descriptors to retrieve the precision and scale that
SQL_C_NUMERIC data must use, while the new driver uses descriptors to get that
information. If the descriptor does not specify these values, then the new driver uses the
default values of 39 for precision and 0 for scale.

For more information, see HOWTO: Retrieving Numeric Data with SQL_NUMERIC_STRUCT
from Microsoft Support.

Catalog Functions
Some catalog functions in the new driver behave differently compared to the old driver. The
functions, and the differences between the new driver and the old driver are described in the
following sections.

Catalog Function Description

SQLTables Returns the value “TYPE” in the TABLE_TYPE column for user-
defined types. The type name is returned in the TABLE_NAME
column.

SQLColumns Returns the value SQL_UNKNOWN_TYPE (zero) in the
DATA_TYPE for a UDT column. The UDT name is returned in the
TYPE_NAME column.

SQLProcedures Returns names of user-defined methods in addition to names of
macros, procedures, and user-defined functions.

The value of the PROCEDURE_TYPE column for a user-defined
method is SQL_PT_PROCEDURE.

SQLProcedureColumns Returns parameter information for user-defined methods. Also,
parameter types might be UDTs and these are returned as for
the SQLColumns catalog function (SQL_UNKNOWN_TYPE in
DATA_TYPE column and UDT name in TYPE_NAME column).

The output for TD_ANYTYPE parameters results in the value
SQL_UNKNOWN_TYPE in the DATA_TYPE column and the

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 286

https://support.microsoft.com/kb/222831

Catalog Function Description

string “TD_ANYTYPE” (without quotes) in the TYPE_NAME
column.

All Catalog Functions

The old driver returns some column names differently depending on whether the driver is
working in an ODBC 2.x or 3.x environment. The new driver always returns ODBC 3.x column
names, even when working in an ODBC 2.x environment.

SQLBindParameter

Binding Date, Time, and Timestamp Literals

When binding any of these types of literals as a parameter, the old driver accepts literals
that contain extra spaces. The new driver only accepts literals that are specified in the exact
format specified in the ODBC specification. If you try to bind a literal that does not use the
required format, the new driver returns the following error:

[Simba][Support] (40550) Invalid character value for cast specification.

For more information about the required format, see Date, Time, and Timestamp Literals in
the ODBC Programmers’ Reference located at:

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-
timestamp-literals.

As an example, both drivers accept the value {d '1995-01-15'}, but only the old driver
accepts the value { d '1995-01-15'}. Note the missing space in the first value before 'd', but
the inserted space in the second value.

Returning Error Information

The new driver responds to certain errors differently than the old driver as described below.

• The new driver does not support SQL_ARRAY_STATUS_PTR and
SQL_DIAG_ROW_NUMBER for parameter sets, so the driver does not set these
properties when an error occurs in a query that contains a parameter set.

• If no errors occurred, but some parameter sets were ignored, then the old driver sets
SQL_ATTR_PARAMS_PROCESS_PTR to SQL_ATTR PARAMSET_SIZE minus the
number of ignored sets. The new driver sets SQL_ATTR_PARAMS_PROCESSED_PTR
to the exact value of SQL_ATTR_PARAMSET_SIZE.

This behavior of the new driver is consistent with the ODBC specification.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 287

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-timestamp-literals
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/date-time-and-timestamp-literals

For more information, see the Error Information in SQLBindParameter Function in the
ODBC Programmers’ Reference: https://docs.microsoft.com/en-us/sql/odbc/reference/
syntax/sqlbindparameter-function.

Using SQL_DEFAULT_PARAM

When SQL_DEFAULT_PARAM is specified as an indicator via the StrLen_or_IndPtr
argument, the old driver ignores it and instead uses the value stored in the buffer. Depending
upon the environment in which SQL_DEFAULT_PARAM is being used, the new driver returns
one of the following:

• If it is specified in a stored procedure call, the new driver uses the value NULL to complete
the stored procedure call and returns SQL_SUCCESS_WITH_INFO.

• If it is specified in something other than a stored procedure call, the new driver returns
SQL_ERROR and does not execute the statement.

The behavior of the new driver is consistent with the ODBC specification, which states that
SQL_DEFAULT_PARAM is valid only when used with a stored procedure call. Teradata
Database does not support default parameters for stored procedures, so the new driver uses
NULL as the value for SQL_DEFAULT_PARAM.

For more information, see SQLBindParameter Function in the ODBC Programmers’
Reference: https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/
sqlbindparameter-function.

Query Parameter Binding

When binding query parameters, the new driver supports different use cases than the old
driver.

Old Driver New Driver

When binding JSON or WJSON data to
a parameter, the old driver returns an
error.

The new driver supports binding JSON and
WJSON data to parameters.

The old driver does not support binding
for SQL_DECIMAL and SQL_NUMERIC
data that has a negative scale.

The new driver supports binding for these types
of values, which is consistent with the ODBC
specification: https://docs.microsoft.com/en-
us/sql/odbc/reference/appendixes/decimal-
digits.

The old driver does not support binding
for SQL_DECIMAL and SQL_NUMERIC
data that has a precision that is less
than 1.

The new driver supports binding for
SQL_DECIMAL and SQL_NUMERIC data that
has a precision of 0, in order to support binding
for NULL values.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 288

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/decimal-digits

Old Driver New Driver

When calling SQLBindParameter, the
old driver verifies the column sizes of the
data and then modifies the column sizes
of the input if needed.

The new driver does not verify column sizes or
modify the input from SQLBindParameter.
When binding LOB data types, the new driver
uses the values returned by GetMaxLobBytes()
or MaxJSONBytes() as the maximum column size
of the LOB data.

Output Parameter Binding

When binding output parameters, a data type conversion is sometimes required. In this case,
the old driver converts the output data to its corresponding SQL type regardless of the data
types specified in SQLBindParameter. In contrast, the new driver converts the output data
to the specified SQL type, or returns a conversion error if the types are not compatible. The
new driver’s behavior is consistent with the ODBC specification.

For example, given the following procedure:

create procedure CharOutputStoredprocedure(OUT param1 CHAR)
cs1: BEGIN
SET param1 = 'A';
END cs1;

Assume that you bind the output parameters as follows:

SQLBindParameter(
stmt,
1,
SQL_PARAM_OUTPUT,
SQL_C_CHAR,
SQL_CHAR,
1024,
0,
&out,
1024,
&cbRetParam)

The given SQL type is the same as the SQL type of the original parameter, so the data does
not need to be converted. The old driver and the new driver both successfully bind the data
and return the value A.

However, if you bind the output parameter as follows, then the data must be converted from
CHAR to SQL_INTEGER:

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 289

SQLBindParameter(
stmt,
1,
SQL_PARAM_OUTPUT,
SQL_C_CHAR,
SQL_INTEGER,
1024,
0,
&out,
1024,
&cbRetParam)

The conversion fails because A is not a valid SQL_INTEGER value. The old driver handles
this situation by converting and binding the output data to SQL_CHAR instead. The new
driver tries to convert the data to SQL_INTEGER and then returns a conversion error with
SQL state 22018.

SQLBindParameter and Data Types with Fractional Seconds

When calling SQLBindParameter with a data type that contains fractional seconds, you
must set the DecimalDigit to a value up to 6, the maximum the database supports. Previous
to 16.20, this could be any number between 0-6 with the same result as if you were to set
it to 6, but this is incorrect and no longer supported.

As an example, TIMESTAMP(0) is no longer valid if you are passing in a fractional second
because according to the ODBC specification, you have specified zero decimal digits and will
receive an error if you try to pass in a fractional second.

You can specify a maximum of up to 6 decimal digits, as this is the limit of the Teradata
Database.

It is acceptable to send less than your specified number of decimal digits.

You can optionally pad out to 9 decimal digits with zeros without issue.

SQLCancel

The new driver responds to timing or processing state of the statement differently than the
old driver.

The ODBC specification defines the following behavior for SQLCancel in situations where no
processing has been done for the statement:

• In ODBC 3.5, SQLCancel has no effect on the statement. To close a cursor, applications
need to call SQLCloseCursor instead of SQLCancel.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 290

• In ODBC 2.x, SQLCancel has the same effect as SQLFreeStmt with the SQL_CLOSE
option. This behavior is defined only for the sake of completeness; applications should
call SQLFreeStmt or SQLCloseCursor instead to close cursors.

For more information, see SQLCancel Function in the ODBC API Reference: https://
msdn.microsoft.com/en-us/library/ms714112%28v=vs.85%29.aspx.

Old Driver New Driver

When executing statements asynchronously, if the
execution is completed before SQLCancel is called,
the old driver returns HY008.

The new driver returns the result of
the statement execution,
(SQL_SUCCESS or SQL_ERROR).

If SQLCancel is called before any processing has
been done for the statement, the old driver closes
the statement regardless of whether the driver is
working in ODBC 2.x mode or ODBC 3.x mode.

Closing the statement reflects behavior that is
consistent with the ODBC 2.x specification, but not
the ODBC 3.x specification.

The new driver does not close the
statement when it is working in
ODBC 3.x mode, and this behavior is
consistent with the ODBC 3.x
specification.

SQLForeignKeys

In the old driver, the columns UPDATE_RULE and DELETE_RULE are returned as empty
strings. In the new driver, these columns are instead returned as NULL.

SQLGetConnectAttr

The following table lists the results of the new and old drivers.

Function Old Driver Returns New Driver Returns

SQL_ATTR_ASYNC_ENABLE Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,

Return: SQL_SUCCESS=0
Out: *ValuePtr =
SQL_ASYNC_ENABLE_OFF
= 0,
*StringLengthPtr = 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 291

Function Old Driver Returns New Driver Returns

*ColumnNumber =
-1, *RowNumber =
-1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Invalid
Attribute"

SQL_ATTR_DISCONNECT_BEHAVIOR Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Invalid
Attribute"

Return: SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> dbc:
szSqlState =
"HY092",
*pfNativeError =
10210, *pcbErrorMsg
= 75, *ColumnNumber
= -1, *RowNumber = -1
MessageText =
"[Teradata][ODBC]
(10210) Attribute
identifier invalid
or not supported:
114"

SQL_ATTR_ENLIST_IN_DTC Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HY092",
*pfNativeError =
0, *pcbErrorMsg
= 50,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =

Return: SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> dbc:
szSqlState =
"HY092",
*pfNativeError =
10210, *pcbErrorMsg
= 76, *ColumnNumber
= -1, *RowNumber = -1
MessageText =
"[Teradata][ODBC]
(10210) Attribute

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 292

Function Old Driver Returns New Driver Returns

"[Teradata][ODBC
Teradata Driver]
Invalid
Attribute"

identifier invalid
or not supported:
1207"

SQL_ATTR_PACKET_SIZE Return:
SQL_ERROR=-1
Out: *ValuePtr =
<unmodified>,
*StringLengthPtr
= <unmodified>
dbc: szSqlState
= "HYC00",
*pfNativeError =
0, *pcbErrorMsg
= 44,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 4096,
*StringLengthPtr = 4

SQL_ATTR_TRANSLATE_LIB Return:
SQL_SUCCESS=0
Out: *ValuePtr =
"쨀쫊쫊쫊쫊쫊쫊쫊쫊
쫊쫊쫊쫊쫊쫊쫊
쫊...",
*StringLengthPtr
= 0

Return:
SQL_SUCCESS=0 Out:
*ValuePtr = "",
*StringLengthPtr = 0

SQLGetDiagField

At this time, the new driver does not support setting the following:

• SQL_DIAG_CURSOR_ROW_COUNT

• SQL_DIAG_ROW_COUNT

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 293

SQLGetInfo

The following table lists the results of the new and old drivers.

Function Old Driver Returns New Driver Returns

SQL_SQL_CONFORMANCE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
SQL_SC_SQL92_ENTRY = 1,
*StringLengthPtr = 4

SQL_CATALOG_NAME_SEPARATOR Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr = 0

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = ".",
*StringLengthPtr = 2

SQL_CREATE_TABLE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 294

Function Old Driver Returns New Driver Returns

Driver does not
support specified
fInfoType"

SQL_DROP_TABLE Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_DROP_VIEW Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_GETDATA_EXTENSIONS Return:
SQL_SUCCESS=0
Out: *InfoValuePtr

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x0000000F =

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 295

Function Old Driver Returns New Driver Returns

= 0x0000000B =
SQL_GD_ANY_COLUMN |
SQL_GD_ANY_ORDER |
SQL_GD_BOUND,
*StringLengthPtr = 4

SQL_GD_ANY_COLUMN |
SQL_GD_ANY_ORDER |
SQL_GD_BLOCK | SQL_GD_BOUND,
*StringLengthPtr = 4

SQL_INDEX_KEYWORDS Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_LOCK_TYPES Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000001 =
SQL_LCK_NO_CHANGE,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000002 =
SQL_LCK_EXCLUSIVE,
*StringLengthPtr = 4

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = 0,
*StringLengthPtr = 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 296

Function Old Driver Returns New Driver Returns

"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

SQL_NUMERIC_FUNCTIONS Return:
SQL_SUCCESS=0
Out:*InfoValuePtr =
0x00014D01 =
SQL_FN_NUM_ABS |
SQL_FN_NUM_EXP |
SQL_FN_NUM_LOG |
SQL_FN_NUM_MOD |
SQL_FN_NUM_SQRT |
SQL_FN_NUM_PI,
StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00194D01 = SQL_FN_NUM_ABS |
SQL_FN_NUM_EXP |
SQL_FN_NUM_LOG |
SQL_FN_NUM_MOD |
SQL_FN_NUM_SQRT |
SQL_FN_NUM_PI |
SQL_FN_NUM_LOG10 |
SQL_FN_NUM_POWER,
*StringLengthPtr = 4

SQL_ODBC_SAG_CLI_CONFORMANCE Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
=
SQL_OSCC_COMPLIANT
= 1,
*StringLengthPtr = 2

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
SQL_OSCC_NOT_COMPLIANT = 0,
*StringLengthPtr = 2

SQL_POS_OPERATIONS Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000001 =
SQL_POS_POSITION,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000000, *StringLengthPtr
= 4

SQL_QUALIFIER_NAME_SEPARATOR Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr = 0

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = ".",
*StringLengthPtr = 2

SQL_SCROLL_CONCURRENCY Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000001 =

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000003 =
SQL_SCCO_READ_ONLY |

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 297

Function Old Driver Returns New Driver Returns

SQL_SCCO_READ_ONLY,
*StringLengthPtr = 4

SQL_SCCO_LOCK,
*StringLengthPtr = 4

SQL_SQL92_GRANT Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000010 =
SQL_SG_WITH_GRANT_OPTION,
*StringLengthPtr = 4

SQL_SQL92_PREDICATES Return:
SQL_ERROR=-1Return:
SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00003F07 = SQL_SP_EXISTS |
SQL_SP_ISNOTNULL |
SQL_SP_ISNULL | SQL_SP_UNIQUE
| SQL_SP_LIKE | SQL_SP_IN |
SQL_SP_BETWEEN |
SQL_SP_COMPARISON |
SQL_SP_QUANTIFIED_COMPARISON,
*StringLengthPtr = 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 298

Function Old Driver Returns New Driver Returns

SQL_SQL92_RELATIONAL_JOIN_OPERATORS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x0000015A =
SQL_SRJO_CROSS_JOIN |
SQL_SRJO_FULL_OUTER_JOIN |
SQL_SRJO_INNER_JOIN |
SQL_SRJO_LEFT_OUTER_JOIN |
SQL_SRJO_RIGHT_OUTER_JOIN,
*StringLengthPtr = 4

SQL_SQL92_STRING_FUNCTIONS Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000006 = SQL_SSF_LOWER |
SQL_SSF_UPPER,
*StringLengthPtr = 4

SQL_STATIC_SENSITIVITY Return:
SQL_SUCCESS=0
Out: *InfoValuePtr
= 0x00000000,
*StringLengthPtr = 4

Return: SQL_SUCCESS=0
Out: *InfoValuePtr =
0x00000003 = SQL_SS_ADDITIONS
| SQL_SS_DELETIONS,
*StringLengthPtr = 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 299

Function Old Driver Returns New Driver Returns

SQL_XOPEN_CLI_YEAR Return: SQL_ERROR=-1
Out: *InfoValuePtr
= <unmodified>,
*StringLengthPtr =
<unmodified>
dbc: szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 76,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Driver does not
support specified
fInfoType"

Return: SQL_SUCCESS=0
Out: *InfoValuePtr = "1995",
*StringLengthPtr = 8

SQLGetStmtAttr

The following table lists the results of the new and old drivers.

Function Old Driver Returns New Driver Returns

SQL_ATTR_CURSOR_SCROLLABLE Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 44,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 0,
*StringLengthPtr
= 4

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 300

Function Old Driver Returns New Driver Returns

SQL_ATTR_CURSOR_SENSITIVITY Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 44,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 0,
*StringLengthPtr
= 4

SQL_ATTR_KEYSET_SIZE Return:
SQL_SUCCESS=0 Out:
*ValuePtr = 0,
*StringLengthPtr =
<unmodified>

Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HY092",
*pfNativeError =
10210,
*pcbErrorMsg = 73,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC]
(10210) Attribute
identifier invalid
or not supported:
8"

SQL_ATTR_RETRIEVE_DATA Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =

Return:
SQL_SUCCESS=0 Out:
*ValuePtr =
SQL_RD_ON = 1,

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 301

Function Old Driver Returns New Driver Returns

<unmodified> stmt:
szSqlState =
"HYC00",
*pfNativeError = 0,
*pcbErrorMsg = 44,
*ColumnNumber = -1,
*RowNumber = -1
MessageText =
"[Teradata][ODBC
Teradata Driver]
Unsupported"

*StringLengthPtr
= 4

SQL_ATTR_ROW_NUMBER

NOTICE
The old driver always returns
SQL_ROW_NUMBER_UNKNOWN;
the new driver returns the actual
number of the current row in the
entire result set.

Return:
SQL_SUCCESS=0
Out: *ValuePtr = 0,
*StringLengthPtr =
<unmodified>

Return:
SQL_SUCCESS=0
Out: *ValuePtr =
1,
*StringLengthPtr
= 4

SQL_ATTR_SIMULATE_CURSOR Return:
SQL_SUCCESS=0 Out:
*ValuePtr =
SQL_SC_NON_UNIQUE =
0, *StringLengthPtr
= <unmodified>

Return:
SQL_ERROR=-1 Out:
*ValuePtr =
<unmodified>,
*StringLengthPtr =
<unmodified> stmt:
szSqlState =
"HY092",
*pfNativeError =
10210,
*pcbErrorMsg = 74,
*ColumnNumber =
-1, *RowNumber =
-1 MessageText =
"[Teradata][ODBC]
(10210) Attribute
identifier invalid
or not supported:
10"

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 302

SQLGetTypeInfo

The new driver returns an additional custom column "USER_DATA_TYPE" at index 20.

New driver columns:

1, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
2, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
3, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, LITERAL_PREFIX, 14, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
5, LITERAL_SUFFIX, 14, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
6, CREATE_PARAMS, 13, SQL_VARCHAR=12, 32, 0, SQL_NULLABLE=1
7, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
8, CASE_SENSITIVE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
9, SEARCHABLE, 10, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
10, UNSIGNED_ATTRIBUTE, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, FIXED_PREC_SCALE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
12, AUTO_UNIQUE_VALUE, 17, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
13, LOCAL_TYPE_NAME, 15, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
14, MINIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
15, MAXIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
16, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
17, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
18, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
19, INTERVAL_PRECISION, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
20, USER_DATA_TYPE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
21, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

Old driver columns:

1, TYPE_NAME, 9, SQL_VARCHAR=12, 39, 0, SQL_NO_NULLS=0
2, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
3, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, LITERAL_PREFIX, 14, SQL_VARCHAR=12, 11, 0, SQL_NULLABLE=1
5, LITERAL_SUFFIX, 14, SQL_VARCHAR=12, 18, 0, SQL_NULLABLE=1
6, CREATE_PARAMS, 13, SQL_VARCHAR=12, 18, 0, SQL_NULLABLE=1
7, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
8, CASE_SENSITIVE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
9, SEARCHABLE, 10, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
10, UNSIGNED_ATTRIBUTE, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, FIXED_PREC_SCALE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
12, AUTO_UNIQUE_VALUE, 17, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
13, LOCAL_TYPE_NAME, 15, SQL_VARCHAR=12, 39, 0, SQL_NULLABLE=1
14, MINIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
15, MAXIMUM_SCALE, 13, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 303

16, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
17, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
18, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
19, INTERVAL_PRECISION, 18, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
20, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

SQLProcedureColumns

The old driver uses SQL_VARCHAR for string columns. The new driver uses
SQL_WVARCHAR for string columns and returns two additional custom columns, at index
20 and 21.

New driver columns:

1, PROCEDURE_CAT, 13, SQL_VARCHAR=12, 1024, 0, SQL_NULLABLE=1
2, PROCEDURE_SCHEM, 15, SQL_VARCHAR=12, 30, 0, SQL_NULLABLE=1
3, PROCEDURE_NAME, 14, SQL_VARCHAR=12, 30, 0, SQL_NO_NULLS=0
4, COLUMN_NAME, 11, SQL_VARCHAR=12, 30, 0, SQL_NO_NULLS=0
5, COLUMN_TYPE, 11, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
6, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
7, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
8, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
9, BUFFER_LENGTH, 13, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
10, DECIMAL_DIGITS, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, NUM_PREC_RADIX, 14, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
12, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
13, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
14, COLUMN_DEF, 10, SQL_VARCHAR=12, 4000, 0, SQL_NULLABLE=1
15, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
16, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
17, CHAR_OCTET_LENGTH, 17, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
18, ORDINAL_POSITION, 16, SQL_INTEGER=4, 10, 0, SQL_NO_NULLS=0
19, IS_NULLABLE, 11, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
20, IS RESULT SET COLUMN, 20, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
21, USER_DATA_TYPE, 14, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
22, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

Old driver columns:

1, PROCEDURE_CAT, 13, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
2, PROCEDURE_SCHEM, 15, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, PROCEDURE_NAME, 14, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
4, COLUMN_NAME, 11, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0
5, COLUMN_TYPE, 11, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
6, DATA_TYPE, 9, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
7, TYPE_NAME, 9, SQL_VARCHAR=12, 128, 0, SQL_NO_NULLS=0

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 304

8, COLUMN_SIZE, 11, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
9, BUFFER_LENGTH, 13, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
10, DECIMAL_DIGITS, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
11, NUM_PREC_RADIX, 14, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
12, NULLABLE, 8, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
13, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1
14, COLUMN_DEF, 10, SQL_VARCHAR=12, 60, 0, SQL_NULLABLE=1
15, SQL_DATA_TYPE, 13, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0
16, SQL_DATETIME_SUB, 16, SQL_SMALLINT=5, 5, 0, SQL_NULLABLE=1
17, CHAR_OCTET_LENGTH, 17, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
18, ORDINAL_POSITION, 16, SQL_INTEGER=4, 10, 0, SQL_NO_NULLS=0
19, IS_NULLABLE, 11, SQL_VARCHAR=12, 3, 0, SQL_NULLABLE=1
20, TDODBC_DATA_TYPE, 16, SQL_SMALLINT=5, 5, 0, SQL_NO_NULLS=0

SQLTables

When using pattern matching with a wildcard character (%), the default catalog metadata
is null, so the new driver returns SQL_INTEGER as the SQL Type for some columns.

For example, for the following call:

SQLTables(<empty string>, %, <empty string>, <null pointer>)

New driver returns:

icol, szColName, *pcbColName, *pfSqlType, *pcbColDef, *pibScale, *pfNullable
1, TABLE_CAT, 9, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
2, TABLE_SCHEM, 11, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, TABLE_NAME, 10, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
4, TABLE_TYPE, 10, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1
5, REMARKS, 7, SQL_INTEGER=4, 10, 0, SQL_NULLABLE=1

Old driver returns:

icol, szColName, *pcbColName, *pfSqlType, *pcbColDef, *pibScale, *pfNullable
1, TABLE_CAT, 9, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
2, TABLE_SCHEM, 11, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
3, TABLE_NAME, 10, SQL_VARCHAR=12, 128, 0, SQL_NULLABLE=1
4, TABLE_TYPE, 10, SQL_VARCHAR=12, 17, 0, SQL_NULLABLE=1
5, REMARKS, 7, SQL_VARCHAR=12, 254, 0, SQL_NULLABLE=1

Column Attributes
For all column attribute information retrieved using SQLColAttribute, the old driver returns
values that vary based on the data. In the new driver, the following column attributes are
based on another attribute or hard-coded to a specific value:

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 305

• SQL_DESC_DATETIME_INTERVAL_PRECISION

For all column types, in the new driver, SQL_DESC_DATETIME_INTERVAL_PRECISION
= SQL_DESC_PRECISION.

• SQL_DESC_PRECISION

For all column types except for NUMERIC and DECIMAL, in the new driver,
SQL_DESC_PRECISION = SQL_DESC_LENGTH.

Additionally, the following table lists by column type the column attributes the new Teradata
ODBC Driver returns.

Column Type Column Attributes Returned by New Driver

BIGINT Octet length is 20.

DATE Display size is returned as a number of characters.

DOUBLE, FLOAT, or REAL Display size is 24.

Interval types • Octet length is 34
• Display size is SQL_DESC_LENGTH + 1
• SQL_DESC_SCALE = SQL_DESC_PRECISION

JSON Octet length is SQL_DESC_LENGTH * character size.

TIME Display size is returned as a number of characters.

TIMESTAMP Display size is returned as a number of characters.

ODBC API Conformance
For the following functions, the new driver adheres to a different level of ODBC API
conformance than the old driver:

• SQLExecute and SQLExecDirect, when no rows are affected by the statement.

When a statement affects 0 rows, the old driver returns SQL_SUCCESS. The new driver
returns SQL_SUCCESS when using ODBC 2.x, and returns SQL_NO_DATA when using ODBC
3.x.

For more information, see "SQL_NO_DATA" in the ODBC Programmers' Reference: .

• SQLPrepare, SQLExecute, and SQLExecDirect, when an empty statement is passed in.

When an empty SQL statement is passed into SQLPrepare, SQLExecute, or
SQLExecDirect, the old driver returns SQL_SUCCESS. The new driver returns SQL_ERROR with
SQLState 42000.

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 306

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/sql-no-data

Converting Data between SQL Types and C Types
When converting data between a SQL type and a C Interval type, the new driver returns some
results differently than the old driver because the new driver supports more conversions. The
old driver does not support the following conversions and returns SQLState 07006; the new
driver converts the data successfully as shown in the example below:

• Numeric types (BIGINT, BIT, DOUBLE, FLOAT, INTEGER, REAL, SMALLINT, TINYINT)
to:

◦ INTERVAL DAY TO HOUR

◦ INTERVAL DAY TO MINUTE

◦ INTERVAL DAY TO SECOND

◦ INTERVAL HOUR TO MINUTE

◦ INTERVAL HOUR TO SECOND

◦ INTERVAL MINUTE TO SECOND

• INTERVAL DAY to INTERVAL SECOND

• INTERVAL HOUR to INTERVAL SECOND

• INTERVAL DAY TO HOUR to INTERVAL SECOND

• INTERVAL DAY TO SECOND to INTERVAL SECOND

• INTERVAL HOUR TO MINUTE to INTERVAL SECOND

• INTERVAL MONTH to INTERVAL YEAR

• INTERVAL HOUR to INTERVAL DAY

• INTERVAL MINUTE to INTERVAL DAY

• INTERVAL MINUTE to INTERVAL HOUR

• INTERVAL MINUTE to INTERVAL DAY TO HOUR

• INTERVAL SECOND to INTERVAL DAY

• INTERVAL SECOND to INTERVAL HOUR

• INTERVAL SECOND to INTERVAL MINUTE

• INTERVAL SECOND to INTERVAL DAY TO HOUR

• INTERVAL SECOND to INTERVAL DAY TO MINUTE

• INTERVAL SECOND to INTERVAL HOUR TO MINUTE

• INTERVAL YEAR TO MONTH to INTERVAL YEAR

• INTERVAL DAY TO HOUR to INTERVAL DAY

• INTERVAL DAY TO MONTH to INTERVAL DAY

• INTERVAL DAY TO MONTH to INTERVAL HOUR

• INTERVAL DAY TO MONTH to INTERVAL DAY TO HOUR

• INTERVAL DAY TO SECOND to INTERVAL DAY

• INTERVAL DAY TO SECOND to INTERVAL HOUR

• INTERVAL DAY TO SECOND to INTERVAL MINUTE

• INTERVAL DAY TO SECOND to INTERVAL DAY TO MINUTE

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 307

• INTERVAL DAY TO SECOND to INTERVAL HOUR TO MINUTE

• INTERVAL HOUR TO MINUTE to INTERVAL DAY

• INTERVAL HOUR TO MINUTE to INTERVAL HOUR

• INTERVAL HOUR TO MINUTE to INTERVAL DAY TO HOUR

• INTERVAL HOUR TO SECOND to INTERVAL DAY

• INTERVAL HOUR TO SECOND to INTERVAL HOUR

• INTERVAL HOUR TO SECOND to INTERVAL DAY TO HOUR

• INTERVAL MINUTE TO SECOND to INTERVAL DAY

• INTERVAL MINUTE TO SECOND to INTERVAL HOUR

• INTERVAL MINUTE TO SECOND to INTERVAL MINUTE

• INTERVAL MINUTE TO SECOND to INTERVAL DAY TO HOUR

• INTERVAL MINUTE TO SECOND to INTERVAL DAY TO MINUTE

• INTERVAL MINUTE TO SECOND to INTERVAL HOUR TO MINUTE

• SQL_C_DOUBLE to SQL_INTERVAL_MONTH

• SQL_C_DOUBLE to SQL_INTERVAL_YEAR

• SQL_C_FLOAT to SQL_INTERVAL_MONTH

• SQL_C_FLOAT to SQL_INTERVAL_YEAR

G: New Teradata ODBC Driver Compatibility Reference

ODBC Driver for Teradata® User Guide, Release 16.20 308

Disabling Password Saving in a DSN
A new registry key Security is introduced (for both 32- and 64-bit) in this release which
would enable a user with Admin privilege to set a value named DisableSavePassword to disable
the password saving feature in the DSN configuration.

Note:

It is important to mention that this is a Windows-only feature. Other platforms are
unaffected.

OS type Registry Key

64-bit HKEY_LOCAL_MACHINE\SOFTWARE\Teradata\Client\Security

32-bit HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Teradata\Client\Security

This key is a DWORD value with the name DisableSavePassword. A value of 1 prevents the
password from being saved. Any other value allows passwords to be saved. If the Key or
Value is missing, then the password is saved.

Changes in ODBC Data Source Administrator
If DisableSavePassword is enabled (value is set to 1), then no password is saved when a user
creates a new DSN in the ODBC Data Source Administrator. The user can still test the
connection by clicking Test after providing a Name or IP Address, Username, and
Password. If the user clicks OK, then the warning dialog box that prompts the user whether
or not to save the password no longer appears, and all information entered except the
password is saved in the registry.

For an existing DSN that already had the password saved in the registry, if
DisableSavePassword is enabled, then the user can still use the existing password to try to
connect to the database (the DSN config window will show the previously saved password
as masked) but they cannot save a new password on that DSN. To delete the saved
password for an existing DSN, a user must change the existing DSN by modifying the Data
Source Name and save it (thus creating a new DSN based on the old one).

Security Considerations

H

ODBC Driver for Teradata® User Guide, Release 16.20 309

Audience
This book is intended for use by:

• System and application programmers

• System administrators

Changes and Additions
The following changes were made to this book in support of the current release.

Date and
Release

Description

October
2018

16.20.11

• Chapter 3:
◦ Teradata ODBC Driver Options: Updated the dialog box and added

the Enable Client Side UDF Upload and UDF Upload Path fields to
the table's new UDF Upload section.

◦ Teradata ODBC Driver Advanced Options:
▪ Updated AccountString to specify AccountStr.
▪ Updated the Max Single LOB Bytes default value to 4000.
▪ Updated the Max Total LOB Bytes Per Row value to 65336.

• Chapter 4:
◦ Teradata ODBC Driver Options: Updated the dialog box and added

the Enable Client Side UDF Upload and UDF Upload Path fields.
◦ Teradata ODBC Driver Advanced Options:

▪ Updated AccountString to specify AccountStr.
▪ Updated the Max Single LOB Bytes default value to 4000.
▪ Updated the Max Total LOB Bytes Per Row value to 65336.

• Chapter 5:
◦ Teradata DSN Options: Updated AccountString information.
◦ Added EnableUDFUpload for the new Enable UDF Source Upload from

Client field.
◦ Added UDFUploadPath for the new Source Root Directory field.

• Chapter 6, LOB Retrieval Modes:
◦ Updated the Max Single LOB Bytes default value to 4000.
◦ Updated the Max Total LOB Bytes Per Row value to 65336.

April 2018 • Chapter 1:

Additional Information

I

ODBC Driver for Teradata® User Guide, Release 16.20 310

Date and
Release

Description

16.20.06 ◦ Key Changes in Product Behavior: Removed the HPUX reference.
◦ ODBC Integrated Directories: Updated the paragraph describing

installation options.
◦ Linux/UNIX and Apple OS X Systems: Updated tdodbc instances to

tdbc1620.
◦ ODBC Integrated Directories: Updated paragraph describing

installation options and capitalize the ODBC instances in the file
paths in the table (for example, ODBC_32/).

• Chapter 2:
◦ ODBC Directories: Updated the ErrorMessage directory reference to

specify ErrorMessages.
◦ Coexistence of Different Version Drivers on the Same Machine:

Updated the .env file location path to specify <prefix>/teradata/
client/16.20/etc and updated the version references in the bash.env
and csh.env files to 1620.

• Chapter 3:
◦ ODBC Driver Setup Parameters: Updated the table's Mechanism row

to remove SPNEGO as it is no longer supported; and added JSON
Web Token (JWT) as a new mechanism.

◦ Teradata ODBC Driver Advanced Options: Updated State Check
Level default value and removed the Note indicating feature
deprecation.

◦ Teradata ODBC Driver Options: Updated the Driver Options figure.
◦ Windows ODBC Driver Directories: Updated the following directory

and directory options and added a directory:
▪ tdodbcdsn is now tdodbcdsn.vbs
▪ libcrypto-1_1-x64.dll is now libcrypto-1_1-x64.dll or

libcrypto-1_1.dll
▪ sbicudt53_64.dll is now sbicudt53_64.dll or sbicudt53_32.dll
▪ sbicuin53_64.dll is now sbicuin53_64.dll or sbicuin53_32.dll
▪ sbicuuc53_64.dll is now sbicuuc53_64.dll or sbicuuc53_32.dll
▪ tdataodbc_sb64.dll is now tdataodbc_sb64.dll or

tdataodbc_sb32.dll
▪ TeradataODBC64.man or TeradataODBC32.man was added

• Chapter 4:
◦ Configuring a DSN Using ODBC Administrator Tool: Updated the

table's Mechanism row to add JSON Web Token (JWT) as a new
mechanism.

◦ Teradata ODBC Driver Options: Updated the Teradata ODBC Driver
Options figure.

• Chapter 6:

I: Additional Information

ODBC Driver for Teradata® User Guide, Release 16.20 311

Date and
Release

Description

◦ UNIX OS Application Development: Removed SUSE Linux 390 as a
supported operating system.

◦ Scalar Functions: Updated the section with new content.
◦ Teradata Database Connect: Updated Mechanism row to include

JWT as a supported mechanism
• Chapter 7:

◦ Authentication Mechanisms: Added JSON Web Token.
◦ Username and Password Requirements: Deleted the TD0 row as TD2

supersedes it, and added a row for JWT.
• Chapter 8:

◦ Added a new section titled SET TRANSFORM GROUP FOR TYPE
Statement.

• Appendix A:
◦ Release-Independent 64-bit odbc.ini File Example: Updated tdata.so

to tdataodbc_sb64.so.
◦ Release-Independent odbc.ini File for Apple OS X Example: Updated

tdata.dylib to tdataodbc_sbu.dylib
• Appendix B:

◦ Release-Independent 64-bit odbcinst.ini File Example: Updated
tdata.so to tdataodbc_sb64.so.

◦ Release-Dependent 32-bit odbcinst.ini File Example: Updated
tdata.so to tdataodbc_sb32.so.

◦ Release-Dependent 64-bit odbcinst.ini File Example: Updated
tdata.so to tdataodbc_sb64.so.

• Appendix D:
◦ Data Source Specification Options Example: Updated tdata.so to

tdataodbc_sb64.so.
◦ DSN Tracing Options Example: Updated the file example to reflect

the SEN driver.
• Appendix H:

◦ Catalog Functions: Added section titled SQLBindParameter and
Data Types with Fractional Seconds.

November
2017

16.20.00

Initial release.

This book leverages content from the ODBC Driver for Teradata User Guide
(B035-2509) to match the functionality of the new Teradata ODBC Driver
16.20.

I: Additional Information

ODBC Driver for Teradata® User Guide, Release 16.20 312

Teradata Links
Link Description

https://docs.teradata.com/ Teradata documentation (HTML)

http://www.info.teradata.com Teradata documentation (PDF)

https://access.teradata.com Customer portal (one stop source for Teradata
services and products)

http://www.teradata.com/products-
and-services/TEN

Teradata education network

https://community.teradata.com Link to Teradata community (also available
from the customer portal)

Related Documentation
Documents are located at https://docs.teradata.com/.

Specific books related to Teradata ODBC Driver are as follows:

Title Publication ID

Security Administration B035-1100

SQL Data Types and Literals B035-1143

Teradata Tools and Utilities for Microsoft Windows Installation Guide B035-2407

Teradata Tools and Utilities for IBM AIX Installation Guide B035-3125

Teradata Tools and Utilities for Oracle Solaris on AMD Opteron Systems
Installation Guide

B035-3126

Teradata Tools and Utilities for Oracle Solaris on SPARC Systems
Installation Guide

B035-3127

Teradata Tools and Utilities for IBM z/OS Installation Guide B035-3128

Teradata Tools and Utilities for Apple OS X Installation Guide B035-3129

Teradata Tools and Utilities for Linux Installation Guide (CentOS, OEL,
RedHat, SLES, Ubuntu)

B035-3160

I: Additional Information

ODBC Driver for Teradata® User Guide, Release 16.20 313

https://docs.teradata.com/
http://www.info.teradata.com
https://access.teradata.com
http://www.teradata.com/products-and-services/TEN
http://www.teradata.com/products-and-services/TEN
https://community.teradata.com
https://docs.teradata.com/

	Contents
	Chapter 1 : Overview
	Introduction
	Prerequisites
	Supported Releases
	Key Changes in Product Behavior
	New Driver Manager Support on Unix
	Determining the Installed Versions of ODBC Driver for Teradata
	Windows
	Linux/UNIX and Apple OS X Systems

	Certification and Release Information
	UNIX and Linux Information
	Teradata Tools and Utilities Directory Layout
	Changes to Runtime Environment Variable Settings
	System Library and Driver Directories
	ODBC Driver Library
	ODBC Integrated Directories

	Apple OS X Information

	Chapter 2 : Configuration for UNIX/Linux Systems
	Overview
	ODBC Directories
	Coexistence of Different Version Drivers on the Same Machine
	Verifying the TCP/IP Connection
	Configuring a UNIX System
	Setting Additional Environment Variables (optional)
	Setting LANG
	Configuring DSN in odbc.ini

	iODBC and unixODBC Driver Manager Installation
	Installing your Chosen Driver Manager
	Selecting the Chosen Driver Manager

	iODBC and unixODBC Driver Manager Connection Testing
	Using the iODBC Driver Manager
	Testing Your Connection Using the iODBC Driver Manager

	Using the unixODBC Driver Manager
	Testing Your Connection Using the unixODBC Driver Manager

	Chapter 3 : Configuration for Windows
	Overview
	Windows ODBC Driver Directories
	Configuring a Data Source
	Coexistence of Different Version Driver on the Same Machine
	Configuring a Data Source using ODBC Data Source Administrator
	ODBC Driver Setup Parameters
	Teradata ODBC Driver Options
	Teradata ODBC Driver Advanced Options

	Reconfiguring a Data Source
	Modifying a Data Source
	Deleting a Data Source

	Resolving a Data Source Name
	Cop Discovery

	Session Character Sets and Translation DLLs
	Working with DSNs
	DSN Tracing
	DSN Migration
	Enabling Driver Logging on Windows
	Disabling Driver Logging on Windows

	Chapter 4 : Configuration for Apple OS X
	Overview
	ODBC Driver Is Universal Binary
	ODBC Driver Directories
	ODBC Driver Manager
	odbc.ini File
	Configuring a DSN Using ODBC Administrator Tool
	Teradata ODBC Driver Options
	Teradata ODBC Driver Advanced Options
	Configuring a DSN Manually in odbc.ini
	Verifying Connection to the Teradata Database

	Chapter 5 : Configuration of odbc.ini in UNIX/Linux and Apple OS X
	ODBC.INI Structure
	Specifying ODBC Driver Managers on Non-Windows Machines
	ODBC Options Section
	ODBC Data Sources Section
	Data Source Specification Section

	ODBC Administration
	Modifying the odbc.ini File
	Adding a Data Source

	Setting ODBCINI
	Teradata DSN Options
	DSN Tracing Attributes
	Configuring Logging Options on a Non-Windows Machine
	Disabling Logging on a Non-Windows Machine

	Chapter 6 : ODBC Application Development
	Overview
	Software Development Kits
	Windows Application Development
	UNIX OS Application Development
	Apple OS X Application Development

	UNIX OS Compilation Options
	Apple OS Compilation Options
	ODBC Conformance
	ODBC API
	SQLSetConnectOption() and SQLSetConnectAttr()
	Statement Options Set in SQLSetStmtAttr()
	Extension Level Functions
	SQLTables
	SQLStatistics
	SQLTablePrivileges
	Unsupported Functions

	Attributes
	Supported Descriptor Fields

	ODBC SQL Grammar
	Core Compliance
	Subqueries
	ODBC Escape Clauses
	CREATE and DROP INDEX
	ODBC Named Indexes
	Scalar Functions

	ANSI SQL 1992 Syntax
	ANSI SQL with No Equivalent Teradata Simulation
	Interval Values
	Data Types for ANSI Compliance

	ODBC Connection Functions and Dialog
	SQLConnect
	Teradata Database Connect
	SQLDriverConnect
	Syntax
	Simplified Logon Without a Connection Dialog Box
	Configuring a DSN
	Simplified Logons with the Default Mechanism

	SQLBrowseConnect
	Keywords for SQLDriverConnect() and SQLBrowseConnect()
	SQLGetInfo - Get User Name

	ODBC Pattern Escape Character
	Large Objects
	ODBC LOB Data Types
	Teradata LOB Data Types
	Teradata SQL and LOB Types
	LOB Limitations
	Application Programming Considerations
	Inserting LOB Data
	Restrictions
	Retrieving LOB Data
	Migration Issues

	LOB Considerations for the ODBC API
	SQLPutData
	SQLGetData
	SQLGetTypeInfo
	SQLColAttribute
	SQLColumns
	SQLGetInfo
	LOB Limitations

	Sample ODBC Programs Accessing LOB Data
	LOB Retrieval Modes
	Creating a Table with BLOB Data
	Inserting LOB Data
	Retrieving LOB Data

	User-Defined Functions
	Return Codes
	Parameter Markers
	Table Functions
	Restrictions

	User-Defined Types and User-Defined Methods
	Importing and Exporting UDT Values
	Importing UDT Values
	Using User-Defined Types with ODBC
	User-Defined Methods
	Return Codes
	Catalog Functions
	Results
	Restrictions

	Parameter Arrays
	Performance
	Using Parameter Arrays
	Restrictions
	Array Requests Limit
	No Positional UPDATE/DELETE and SELECT INTO
	No CALL Statements
	No DML Array Requests with Triggers

	Error Handling and Transaction Semantics
	Requests That Do Not Generate Result-Sets
	Result-Set Generating Requests

	New Parser
	Large Decimal and BIGINT Support
	64-bit Support
	Extended Object Names (EON)
	SQLGetInfo

	Chapter 7 : Network Security
	Overview
	Password Encryption
	Single Sign-On (Windows and Apple OS X)
	Enabling SSO
	SSO Usage
	SSO Error Messages

	Data Encryption
	Connection Level
	DSN Option
	SQLDriver/BrowseConnect() Keyword

	Statement Level
	Backward Compatibility
	Gateway Dependency
	Performance Considerations

	Extensible Authentication, Authorization, and Encryption
	Authentication
	Authorization
	Confidentiality
	Integrity

	Authentication Mechanisms
	Determination of Authentication Mechanism
	The USEINTEGRATEDSECURITY Connection String Attribute

	Configuring Authentication Mechanisms
	Connecting to Teradata Database
	Username and Password Requirements

	Enhancing Security
	Constraints
	Disconnect After Security Context Expiration
	Connection Pooling (Windows and Apple OS X)
	TDGSS Support for UTF16

	Teradata Wallet
	Examples
	Password Expiration and Teradata Wallet

	Chapter 8 : ODBC Driver for Teradata Application Development
	Overview
	Teradata Extensions to the ODBC Standard
	Connection Attributes
	Statement Attributes
	SQL Column Attributes
	When Making SQLColAttribute Calls

	SQL Descriptor Fields
	SQLGetTypeInfo
	SQLColumns
	SQLProcedureColumns
	Teradata ODBC Driver SQL Types

	Stored Procedures
	Stored Procedure Creation from ODBC
	Checking for Stored Procedure Support
	Print and SPL Options
	Print Option
	ProcedureWithSPLSource

	SPL Compilation Errors and Warnings
	Structure of Error and Warning Messages
	Executing Stored Procedures from ODBC
	Rules for Input and Output Arguments
	Stored Procedures Dynamic Result Sets
	Example
	External Stored Procedures
	Restrictions

	Auto-Generated Key Retrieval
	SQL Descriptor Fields
	SQL_DESC_UNSIGNED is set regardless of FORMAT
	SQL_DESC_BASE_COLUMN_NAME when there is an alias
	SQL_DESC_CASE_SENSITIVE
	SQL_DESC_TD_UDT_INDICATOR
	SQL_DESC_TD_UDT_NAME

	International Character Set Support
	Introduction
	ODBC C Character Data Types
	ODBC SQL Character Data Types
	Conversion and Error Handling
	Parameter and Result Set Data
	Error Handling

	ANSI ODBC Applications
	Unicode ODBC Applications
	Application Considerations
	UNICODE Symbol Definition
	Unicode Character Types
	Windows
	UNIX/Linux
	Apple OS X

	Length Arguments for Unicode ODBC Functions

	User-Defined Session Character Set Support
	Translation DLLs
	Application Code Page
	ODBC Application Code Page Values (Linux/UNIX and Apple OS X)

	UTF8 Pass Through Functionality
	Restrictions

	Atomic UPSERT
	Syntax

	ANSI Date and Time Restrictions
	ANSI DateTime Feature
	Change Your DSN Configuration
	DateTimeFormat Compatibility and Precision

	Period Data Types
	Availability of Period Data Types
	Retrieving Period Data
	Period SQL to Character C type Conversion
	Period SQL to Binary C type Conversion

	Using Period Parameters
	Character C Type to Period SQL Types
	Binary C Type to Period SQL

	Period Literals

	Geospatial Types
	Number Data Types
	SQLGetTypeInfo
	Retrieving Number Data
	Using Number Parameters

	Array Data Types
	XML Data Type
	SQLGetTypeInfo
	XML Data Type Values and Conversions

	JSON Integration
	SQLGetTypeInfo

	DATASET Data Type
	SQLGetTypeInfo Result Set

	SET TRANSFORM GROUP FOR TYPE Statement
	Examples
	Usage
	Error Message

	NoPI Tables
	Trusted Sessions
	Restrictions
	Multi-Statement SQL Requests
	Teradata String Constants
	Teradata Column Limitation
	WITH Clause
	Asynchronous Operation

	ANSI Migration Issues
	Transaction Semantics
	Data Truncation
	Duplicate Rows
	Updatable Cursors
	Case Sensitivity

	Configuration Characteristics
	Database Password Expiration

	SQL Considerations
	Newname in SELECT Statement
	ANSI Comments in SQL Requests

	DSN Settings for Third-Party Applications

	Appendix A : odbc.ini File Examples
	Overview
	Release-Independent 32-bit odbc.ini File Example
	Release-Independent 64-bit odbc.ini File Example
	Release-Independent odbc.ini File for Apple OS X Example

	Appendix B : odbcinst.ini File Examples
	Overview
	Release-Independent 32-bit odbcinst.ini File Example
	Release-Independent 64-bit odbcinst.ini File Example
	Release-Dependent 32-bit odbcinst.ini File Example
	Release-Dependent 64-bit odbcinst.ini File Example

	Appendix C : ODBC Options Examples
	Overview
	ODBC Options Section
	ODBC Options: IBM AIX, Linux, Solaris
	ODBC Options: Apple OS X

	Data Source Specification Options Example
	DSN Tracing Options Example

	Appendix D : Deprecated SQL Transformations
	Overview
	Pseudo Type Mappings (deprecated in 16.20)
	Standard Type Mappings (deprecated in 16.20)
	IN-List Expansion (deprecated in 16.20)
	ODBC-Style Named Indexes (deprecated in 15.00)
	CALL to EXEC Conversion (deprecated in 14.10)
	Teradata ODBC Specific Comparison Operators (deprecated in 14.10)
	ODBC Scalar Functions Outside Escape Sequences (deprecated in 14.10)

	Appendix E : ODBC Sample Program Usage Information
	Overview
	Location of the ODBC Sample Program
	Sample Output
	Executing tdxodbc to Validate Installation
	Windows
	Sample Command
	Restrictions and Considerations
	Sample Output

	UNIX/Linux/Apple OS X

	Appendix F : MultiVersion Support
	Overview
	UNIX Operating System
	16.20 as the Active TTU
	Release-Independent odbc.ini File
	DSN-Less Connection
	Creating a Custom Driver Name
	Removing a Custom Driver Name
	Teradata ODBC Driver Installation

	Apple OS X
	16.20 as the Active TTU
	Release-Independent odbc.ini File
	Creating a Custom Driver Name
	Removing a Custom Driver Name

	Windows
	Creating a Custom Driver Name
	Removing a Custom Driver Name
	General Guidelines

	Appendix G : New Teradata ODBC Driver Compatibility Reference
	Deprecated Features for New Teradata ODBC Driver
	New Teradata ODBC Features
	Catalog Functions
	Column Attributes
	ODBC API Conformance
	Converting Data between SQL Types and C Types

	Appendix H : Security Considerations
	Disabling Password Saving in a DSN
	Changes in ODBC Data Source Administrator

	Appendix I : Additional Information
	Audience
	Changes and Additions
	Teradata Links
	Related Documentation

